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Preliminary notes
Things we do with time
1. On the level of single time series:

a. Typical frequency-domain analyses (power spectra, power in low 
frequency)

b. ICA
c. Time-domain analysis (entropy and variants, dynamic systems approaches: 

self-similarity, fractal features, embedding dimensions, Hurst exponent)
d. Peak analysis
e. Temporal motifs

2. On the level of multiple time series
a. Pairwise correlations (functional connectivity)
b. Causality analyses (Granger, dynamic causal models, structural equation 

models, psychophysiological interactions)
c. Network-based analysis (topology, partition structure)
d.  Spatiotemporal ICA
e.  Dynamic connectivity



Space and Time
Electroencephalography, Magnetoencephalography, 

Electrocorticography, functional MRI 



EEG

• Measures spontaneous or 
induced electrical activity 
manifested as synchronous 
activity of multiple neurons 

• Rapid sampling rate



MEG

• Measures changes in 
magnetic field around the 
head 

• Rapid sampling rate 

• sensitive to radial dipoles and 
less sensitive than EEG to 
deep sources of activity 



FMRI
• Measures changes in local 

oxygen content within gray 
matter 

• Scale of ~ 2mm^3;  temporal 
resolution ~ 1Hz 

• Equally sensitive to activity 
across the brain (with few 
exceptions) 

• fluctuations ~ 1% from 
background “noise”



A never-resting human brain
• The human brain continuously consumes energy.  The brain 

accounts for 20% of energy consumption during rest, and 
surprisingly, actual cognitive activity appears to increase that by no 
more than 5% 

• In the last 10 years, there is a massive effort to understand the 
nature of this intrinsic activity 

• Guiding premise: the brain is not reactive, but maintains ordered 
modes of operation during rest via rhythmic synchronization 
(Buzsaki and Draguhn 2004) 

• A dominant framework for understanding this endogenous activity 
is in terms of networks operating while the brain is at rest (Resting 
State Networks; RSNs)



The RSN paradigm

• Defining a network via seed 

• reveal map of brain areas 
functioning in synchrony



The RSN paradigm

• Not just motor network 

• Some patio-temporal ICAs 
suggest 1000s of networks



The RSN paradigm

• One network — the Default 
Mode Network — has 
received much attention

Fox, Michael D., et al. "The human brain is intrinsically organized into dynamic, anticorrelated functional networks." Proceedings of the National Academy of 
Sciences of the United States of America 102.27 (2005): 9673-9678.
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The RSN paradigm

• Most spectral power is in low 
to very-low frequencies 

• Dominant networks often show 
a peak between .01 and .05 
Hz (20-100sec) 

• The HRF is a filter
HRF basic 

function 

Robinson, Simon, et al. "A resting state network in the motor control 
circuit of the basal ganglia." BMC neuroscience 10.1 (2009): 1.



The Network paradigm

Blondel, Vincent D., et al. "Fast unfolding of communities in large 
networks." Journal of statistical mechanics: theory and experiment 

2008.10 (2008): P10008.



The Network paradigm

High	order	 Random	

Andric, Michael, and Uri Hasson. "Global 
features of functional brain networks change 
with contextual disorder." Neuroimage 117 

(2015): 103-113.



Fast, non-oscillatory dynamics

• 70 sec of movie viewing (Skipper 
et al., 2009) 

• Local minima and maxima in a 
time series (ventral premotor) 
were identified 

• Peaks tend to occur with gestures 
when gestures are meaningful, 
but this match does not hold 
when the movie is accompanied 
by non-meaningful gestures 

• Figure shows 13 peaks in 70sec.

Local Peaks

Skipper, Jeremy I., et al. "Gestures orchestrate brain networks for language 
understanding." Current Biology 19.8 (2009): 661-667.



Fast, non-oscillatory dynamics

• Garrett et al. (2010). Short 
20sec epochs of between-task 
rest epochs contain 
meaningful variance.  
Standard deviation in these 
epochs correlated with 
chronological age

or less variable BOLD responses, and decreased signal-to-noise
(Huettel et al., 2001; D’Esposito et al., 2003; Gazzaley and
D’Esposito, 2005; Andrews-Hanna et al., 2007; Handwerker et
al., 2007). Even though these (and other) confounds may affect
any fMRI study of aging and are not easily controlled (D’Esposito
et al., 2003; Gazzaley and D’Esposito, 2005; Handwerker et al.,
2007), we argue against the substantial influence of these con-
founds on our variability-based results for two reasons. First,
recent efforts to account for vascular confounds in fMRI research
on aging assume these effects are essentially global (and thus
unidirectional) in nature (Handwerker et al., 2007). However,
the largely bidirectional pattern of age differences in variability
seen in Figure 4a suggests that any “global” or unidirectional
confound cannot account easily for our results. Second, if we are
at risk of having “junk noise” drive our SD-based age effects

(whatever the source), we should notice decreases in the ability of
this measure to predict age with more extensive preprocessing.
Importantly, we found that the opposite was true (see Table 1).
After ICA denoising, white matter/CSF/motion parameter re-
gression, and block normalization [which together reduced voxel
SDs to 50% of the SD level found using more typical preprocess-
ing steps (see Materials and Methods for a list of these steps)], the
R 2 in age doubled, from 0.39 to 0.81. Conversely, mean-based
relations were relatively unaffected by more extensive prepro-
cessing (R 2 ! "0.60 at most stages of preprocessing).

Discussion
In the current study, we attempted to characterize how variability
in BOLD activity differs by age. First, we confirmed the presence
of a robust age-related effect in a multivariate pattern of regions

Figure 4. PLS brain patterns and overlay plots. a, Yellow/red regions indicate robust age-related increases, and blue regions indicate age-related decreases, in BOLD SDs. b, Yellow/red regions
indicate robust age-related increases, and blue regions indicate age-related decreases, in BOLD means. In both a and b, all robust areas surpassed a thresholded bootstrap ratio (salience/SE) of
!3.00 (for yellow/red regions) or "#3.00 (for blue regions). Darker colors indicate greater robustness. c, Overlay plot highlighting differences between age-based SD- and mean-brain spatial
patterns. Red, Mean increase, no SD effect; blue, mean decrease, no SD effect; green, SD increase, no mean effect; yellow, SD decrease, no mean effect. d, Overlay plot highlighting similarities
between age-based SD- and mean-brain spatial patterns. Blue, mean and SD both decrease with age; green, mean decrease, SD increase. All images represent every other slice in z-direction.

4918 • J. Neurosci., April 7, 2010 • 30(14):4914 – 4921 Garrett et al. • BOLD Variability Is More than Just Noise

Standard deviation

Garrett, Douglas D., et al. "Blood oxygen level-dependent signal variability is 
more than just noise." The Journal of Neuroscience 30.14 (2010): 4914-4921.



Fast, non-oscillatory dynamics

• Tagliazucchi et al (2010) 

• Obtain time series from a certain 
region (a seed); note ‘peaks’ 

• Tests if there are brain areas 
showing peaks at the same time 
and that have the same shape as 
seed-region peaks 

• Find: premotor systems bilaterally 
peak at similar times

Phasic events (I)

Tagliazucchi, Enzo, et al. "Spontaneous BOLD event triggered averages for 
estimating functional connectivity at resting state." Neuroscience letters 488.2 

(2011): 158-163.



Fast, non-oscillatory dynamics

• Tagliazucchi et al (2012) 

• The method identifies many well 
defined RSNs 

• 3 (!) points are sufficient to obtain 
the networks; 5 points already 
provides high correlation with PCA 
results.   

• Compression ratio of 95%

Phasic events (I) 3
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FIG. 2: RSN maps constructed with the point process compare very well with standard PICA of the raw continuous data.
(A) PICA spatial maps (left column) and rate of points conditional to activity at a given seed (rightmost three columns, each
one corresponds to a different seed). (Slice z coordinates are -12, 0, 0, 36, 20, 26 for RSN 1 to 6; for seed coordinates see
Table 1). Scales for PICA (ZPICA) and conditional rate (ZCR) calculations are depicted in the inset. (B) Conditional rate
maps constructed using 3, 6 and 12 events of the point process at the ANGL seed (averaged for ten subjects. Slice coordinates
are x=-4,y=-60,z=18). (C) Correlation between RSN5 (the default-mode network, DMN) PICA-derived map and the point
process-derived conditional rate maps, as a function of the number of points used. Arrows denote the examples of panel B. Z
scores (number of points as degrees of freedom) with the line of 95% confidence are plotted in the inset. (D) The point process
is able to track the statistical differences between the functional connectivity maps of a group of chronic back pain patients and
healthy controls already reported in [15]. The conditional rate of points (top) reproduces well the standard seed correlation
approach (bottom) derived from the same data. (E) The functional connectivity maps during a finger tapping task constructed
from the conditional rate of points (top) compare well with the seed correlation maps derived from the same data [16].

coordinates in Table I of Materials and Methods Section). The similarities between our conditional rate maps and
the respective PICA maps (rightmost three columns and left column of Figure 2A respectively) is already obvious
to the naked eye and confirmed by the correlation plotted in Fig. 2C. The calculation shows that despite using less
than 6% of the raw fMRI information, about 5 points (on average) are enough to obtain RSN maps that are highly
correlated (95% confidence) with those obtained using PICA of the full BOLD signals. Similar good performance
can be demonstrated in tracking physio-pathological changes of brain activation. This is presented in panel D which
shows the statistical differences in functional connectivity between a group of chronic back pain (CBP) patients and
healthy controls already reported in [15] (comparison with seed correlation based in the DMN, increased correlation
with bilateral insula in CBP). Finally, the data analysis from a finger tapping task [16] demonstrates also the merits
of the current approach when compared with a seed correlation based in primary motor cortex contralateral to the
tapping hand (panel E).

Peak co-occurrence  
(3 different seeds) ICA analysis 



Fast, non-oscillatory dynamics
Amplitude Variance Asymmetry: basics

• Allows identification of ceiling and floor 
mode patterns 

• Does not index randomness (well 
behaved and random can have no AVA) 

• Differs from measures of disorder 
tracking entropy 

• Differs from measures that will return 
the same value for a time series ‘y’ 
and the time series ‘-1*y’ 

• Is not logically correlated with the 
variance of the time series (consider 
increasing amplitude of sine wave)

Davis, Ben, et al. "Functional and developmental significance of amplitude variance asymmetry 
in the BOLD resting-state signal." Cerebral Cortex (2013): bhs416.



Fast, non-oscillatory dynamics
Amplitude Variance Asymmetry: occurring in dynamic systems

• f(x)= a x (1- x) { with 3 < a < 4} 

• Simulate 20K element series per 
each value of a; grab the final 
10K, calculate AVA and plot 
against number of discrete values 
in the series
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Fast, non-oscillatory dynamics
Amplitude Variance Asymmetry: occurring in dynamic systems
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Fast, non-oscillatory dynamics
Amplitude Variance Asymmetry: In the brain

Davis, Ben, et al. "Functional and developmental significance of amplitude variance asymmetry in the 
BOLD resting-state signal." Cerebral Cortex (2013): bhs416.



Fast, non-oscillatory dynamics
Amplitude Variance Asymmetry: 

during sleep

• N1: transitional sleep; associated 
with loss of posterior alpha 

• N2, N3: Non REM sleep 

• N3: slow wave

Awake

N1

N2N3

Awake - N3Awake - N2

Davis, Ben, et al. "Progression to deep sleep is 
characterized by changes to BOLD dynamics in sensory 

cortices." NeuroImage 130 (2016): 293-305.



Fast, non-oscillatory dynamics
Amplitude Variance Asymmetry: 

during sleep

• Peak-to-peak intervals 
shorter during wakefulness 

• Contain more information 
than AVA

Davis, Ben, et al. "Progression to deep sleep is 
characterized by changes to BOLD dynamics in sensory 

cortices." NeuroImage 130 (2016): 293-305.



Fast, non-oscillatory dynamics
Amplitude Variance Asymmetry: 

moving on

Lacasa 2009; visibility graphs
Lacasa, Lucas, et al. "From time series to complex networks: The 

visibility graph." Proceedings of the National Academy of Sciences 
105.13 (2008): 4972-4975.



Micro states and Motifs

• Spatio-temporal building blocks of continuous 
activity (Britz et al., 2010) 

• State: configuration of spatial activity that holds 
for some time. 

• Spatio-temporal clustering identifies states

Britz, Juliane, Dimitri Van De Ville, and Christoph M. Michel. "BOLD correlates of EEG topography reveal 
rapid resting-state network dynamics." Neuroimage 52.4 (2010): 1162-1170.



4sec EEG map





Time-dependent networks in 
fMRI: chronnectome

Calhoun et al., 2015 Motifs in connectivity of eigenvectors



Time-dependent networks in 
fMRI: chronnectome

Calhoun et al., 2015

• Schizophrenics spend longer in 
state 4 (less connected state)



What next



•1.	 There	are	technologies	within	neuroinformatics	for	storing		and	
sharing	neuroimaging	data	—>	limited	to	9iles	and	metadata.		
There	is	not	work	that	can	be	done	on	the	time	series	directly	as	
stored	in	any	sort	of	database	that	allows	searches	

•2.	 Identi9ication	of	repeated	patterns;	approximate	searches		will	
be	important!	Allows	us	to	verify	whether	to	psychological	states	
or	populations	that	may	manifest	slight	but	systematic	differences	
in	manifestation	of	a	pattern.	Motif	discovery	will	become	central.	

•3.	 Real-Time	MEG,	fMRI	–	what	is	the	person	thinking	about?	What	
9inger/hand	would	he	want	to	move?	Did	this	activity	tend	to	
precede	an	error/hand	moving	in	the	last	session	(“show	me	all		
time	windows	that,	in	this	session,	followed	the	current	pattern”).				

•4.	 Adapting	to	multivariate	data	–	extend	for	purposes	of	search	
and	classi9ication.	

•5.	 How	do	we	merge	approaches?	Isax	indexing	depends	on	
domain	knowledge	(length	of	time	series	you	will	search	for).		Can	
the	‘time	series’	indexed	in	the	database	re9lect	9luctuations	in	
these	features.	

•6.	From	time	series	to	local	source.	local	peak	9itting


