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Preliminary notes

Things we do with time
1. On the level of single time series:
a. Typical frequency-domain analyses (power spectra, power in low
frequency)
b. ICA
c. Time-domain analysis (entropy and variants, dynamic systems approaches:
self-similarity, fractal features, embedding dimensions, Hurst exponent)
d. Peak analysis
e. Temporal motifs
2. On the level of multiple time series
a. Pairwise correlations (functional connectivity)
b. Causality analyses (Granger, dynamic causal models, structural equation
models, psychophysiological interactions)
c. Network-based analysis (topology, partition structure)
d. Spatiotemporal ICA
e. Dynamic connectivity



Spatiotemporal Scales of Neural Signals
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Electroencephalography, Magnetoencephalography,
Electrocorticography, functional MR
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* Measures spontaneous or
induced electrical activity
manifested as synchronous
activity of multiple neurons

* Rapid sampling rate




* Measures changes in
magnetic field around the
head

* Rapid sampling rate

* sensitive to radial dipoles and
less sensitive than EEG to
deep sources of activity




Measures changes in local
oxygen content within gray
matter

Scale of ~ 2mmA3; temporal
resolution ~ 1Hz

Equally sensitive to activity
across the brain (with few
exceptions)

fluctuations ~ 1% from
background "noise”

Neuronal Neurovascular Hemodynamic
Model Coupling Model

Figure 1. Schematic illustration of physiological variables and their interactions
assumed in P-DCM.



A never-resting human brain

 The human brain continuously consumes energy. The brain
accounts for 20% of energy consumption during rest, and
surprisingly, actual cognitive activity appears to increase that by no
more than 5%

* Inthe last 10 years, there is a massive effort to understand the
nature of this intrinsic activity

e Guiding premise: the brain is not reactive, but maintains ordered
modes of operation during rest via rhythmic synchronization
(Buzsaki and Draguhn 2004)

« A dominant framework for understanding this endogenous activity
IS in terms of networks operating while the brain is at rest (Resting
State Networks; RSNs)



The RSN paradigm

* Defining a network via seed
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* reveal map of brain areas
functioning in synchrony




The RSN

* Not just motor network

* Some patio-temporal ICAS
suggest 1000s of networks

paradigm
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S
B default (12%) >

B dorsal attention/control (15%)
visual (16%)

B auditory/phonology (6%)
motor (14%)
self-referential (10%)

Figure 2. Different identified resting state networks (RSN) onto the same atlas brain covering about 66% of the total brain

volume. These RSN are somato-motor, visual occipital and auditory temporal, and several associative networks covering fronto-
temporal-parietal cortices (dorsal attention, default, language, and control).



The RSN paradigm

e One network — the Default
Mode Network — has
recelived much attention
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Fox, Michael D., et al. "The human brain is intrinsically organized into dynamic, anticorrelated functional networks." Proceedings of the National Academy of
Sciences of the United States of America 102.27 (2005): 9673-9678.



The RSN paradigm

* One network — the Default

Mode Network — has
recelived much attention

% Change

Fox M D et al. PNAS 2005;102:9673-9678

Fox, Michael D., et al. "The human brain is intrinsically organized into dynamic, anticorrelated functional networks." Proceedings of the National Academy of
Sciences of the United States of America 102.27 (2005): 9673-9678.



The RSN paradigm

Robinson, Simon, et al. "A resting state network in the motor control
circuit of the basal ganglia." BMC neuroscience 10.1 (2009): 1.

Figure 5.
0.4

* Most spectral power is in low
to very-low frequencies

 Dominant networks often show
a peak between .01 and .05
Hz (20-100sec)

* The HRF is a filter

. HRF basic
£ oo function

Frequency (Hz)

Comparison of the mean spectral distribution of the basal ganglia RSN component over
subjects (green) with the spectral distributions of documented RSNs (black) and physiological
components (red).

time [s]

Robinson et
Download au

al. BMC Neuroscience 2009 10:137 doi:10.1186/1471-2202-10-137
thors' original image




The Network paradigm

Initial level Lowest non-trivial level Optimal level
I

16 communities, Q= -0.08 (4 communities, () = 0.38) (2 communities, Q = 0.45)

Blondel, Vincent D., et al. "Fast unfolding of communities in large
networks." Journal of statistical mechanics: theory and experiment
2008.10 (2008): P10008.




The Network paradigm

Markov Entropy = 0.81 Markov Entropy = 2
(Random)
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Andric, Michael, and Uri Hasson. "Global
features of functional brain networks change
with contextual disorder." Neuroimage 117
(2015): 103-113.



Fast, non-oscillatory dynamics

ocal Peaks

70 sec of movie viewing (Skipper
et al., 2009)

Local minima and maxima in a
time series (ventral premotor)
were identified

Peaks tend to occur with gestures
when gestures are meaningful,
but this match does not hold
when the movie is accompanied
by non-meaningful gestures

Figure shows 13 peaks in 70sec.

Skipper, Jeremy 1., et al. "Gestures orchestrate brain networks for language
understanding." Current Biology 19.8 (2009): 661-667.
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Fast, non-oscillatory dynamics

a SD-brain

e Garrett et al. (2010). Short
20sec epochs of between-task
rest epochs contain
meaningful variance.

Standard deviation in these
epochs correlated with
chronological age

Garrett, Douglas D., et al. "Blood oxygen level-dependent signal variability is
more than just noise." The Journal of Neuroscience 30.14 (2010): 4914-4921.




Fast, non-oscillatory dynamics

Phasic events (1)
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Obtain time series from a certain e

region (a seed); note ‘peaks’

Tests if there are brain areas
showing peaks at the same time
and that have the same shape as
seed-region peaks
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Find: premotor systems bilaterally
peak at similar times

Tagliazucchi, Enzo, et al. "Spontaneous BOLD event triggered averages for
estimating functional connectivity at resting state." Neuroscience letters 488.2
(2011): 158-163.

Rest (rBeta correlation)




Fast, non-oscillatory dynamics

Tagliazucchi et al (2012)

The method identifies many well
defined RSNs

3 (1) points are sufficient to obtain
the networks; 5 points already
provides high correlation with PCA
results.

Compression ratio of 95%

PICA

- ICA analysis

Conditional rates
Peak co-occurrence

(3 different seeds)




Fast, non-oscillatory dynamics

Amplitude Variance Asymmetry: basics

* Allows identification of ceiling and floor

mode patterns variance(peaks)

e Does not index randomness (well AL
behaved and random can have no AVA) | AN } variance(pits)

« Differs from measures of disorder " Acquisition
tracking entropy B

Amplitude Variance Asymmetry test per voxel:

* Differs from measures that will return
the same value for a time series 'y’ Null Hypothesis: Voxel Ratio (VR) = 6?(peaks)/c?(pits) = 1
and the time series -1y’

Group-level test: Mean(log(VR,), log(VR,)...log(VR)) # 1
* |s not logically correlated with the Single-participant test:  Levene's W> F(dfy, dfp)
variance of the time series (consider dfa=1;

: : : : dfp = N(peaks) + N(pits) - 1.
increasing amplitude of sine wave) /b= N(peaks) + N(pits)

Davis, Ben, et al. "Functional and developmental significance of amplitude variance asymmetry
in the BOLD resting-state signal." Cerebral Cortex (2013): bhs416.



Fast, non-oscillatory dynamics

Amplitude Variance Asymmetry:. occurring in dynamic systems

Q No AVA; a=3.961

* f(X)=ax(1-x){with3 <a<4}

* Simulate 20K element series per AVA; a=3.65. Ceiling mode

each value of a; grab the final :
10K, calculate AVA and plot
against number of discrete values
in the series




Fast, non-oscillatory dynamics

Amplitude Variance Asymmetry: occurring In dynamic systems




Fast, non-oscillatory dynamics

Amplitude Variance Asymmetry: In the brain

Davis, Ben, et al. "Functional and developmental significance of amplitude variance asymmetry in the
BOLD resting-state signal." Cerebral Cortex (2013): bhs416.



Fast, non-oscillatory dynamics

Amplitude Variance Asymmetry:
during sleep

 N1: transitional sleep; associated
with loss of posterior alpha

« N2, N3: Non REM sleep

e N3: slow wave

Davis, Ben, et al. "Progression to deep sleep is
characterized by changes to BOLD dynamics in sensory
cortices." Neurolmage 130 (2016): 293-305.




Fast, non-oscillatory dynamics

Amplitude Variance Asymmetry:
during sleep

Changes in Peak-to-peak Intervals

* Peak-to-peak intervals
shorter during wakefulness

 Contain more information
than AVA

Davis, Ben, et al. "Progression to deep sleep is
characterized by changes to BOLD dynamics in sensory
cortices." Neurolmage 130 (2016): 293-305.




Fast, non-oscillatory dynamics

Amplitude Variance Asymmetry:
moving on
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Lacasa, Lucas, et al. "From time series to complex networks: The
visibility graph." Proceedings of the National Academy of Sciences

LB.CLB.ZOOg; Villlell |t§( grthS 105.13 (2008): 4972-4975.




Micro states and Motits

o Spatio-temporal building blocks of continuous
activity (Britz et al., 2010)

o State: configuration of spatial activity that holds
for some time.

o Spatio-temporal clustering identifies states

Britz, Juliane, Dimitri Van De Ville, and Christoph M. Michel. "BOLD correlates of EEG topography revea
rapid resting-state network dynamics." Neuroimage 52.4 (2010): 1162-1170.
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4sec EEG map




Microstate:

0.6 pV

0.0 pv

Subject A
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Subject C

Subject D
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Time-dependent networks In
fMRI: chronnectome

A |dentification of intrinsic connectivity networks (ICNs)

Resting-state data Group components Time Courses Spatial Maps

B Assessment of functional network connectivity (FNC) between ICNs
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kmeans clustering

ICN time courses

state1 state2 state3 stated states
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dFNC windows

cluster centroids

transition vector

Calhoun et al., 2015 Motifs in connectivity of eigenvectors



Time-dependent networks In
fMRI: chronnectome

e Schizophrenics spend longer in
state 4 (less connected state)

Calhoun et al., 2015




What next



1. There are technologies within neuroinformatics for storing and
sharing neuroimaging data —>
There is not work that can be done on the time series directly as
stored in any sort of database that allows searches
2. Identification of repeated patterns; will
be important! Allows us to verify whether to psychological states
or populations that may manifest
Motif discovery will become central.
3. Real-Time MEG, fMRI - what is the person thinking about? What
finger/hand would he want to move? Did this activity tend to
precede an error/hand moving in the last session (“show me all
time windows that, in this session, followed the current pattern”).
4, Adapting to multivariate data - extend for purposes of search
and classification.
5. How do we merge approaches? Isax indexing depends on
domain knowledge (length of time series you will search for). Can
the ‘time series’ indexed in the database reflect fluctuations in
these features.
6. From time series to local source. local




