Data analysis methods for gravitational waves

Einstein's General relativity

General relativity – 1915

- Spacetime is a deformable and dynamic object
- Gravity describes as a geometrical effect coming from spacetime curvature
- Einstein's fields equations

Space-time geometry

$$G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

Energy/ Matter

"spacetime tells matter how to move; matter tells spacetime how to curve"

John Archibald Wheeler

Gravitational waves

• Linearization of Einstein equations

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu} \quad |h_{\mu\nu}| \ll 1 \implies \Box \bar{h}_{\mu\nu} = 0$$

- Propagating perturbations of space-time metric
 - Travel at the speed of light
 - Tranverse waves
 - Two polarisations x and +
 - Dimensionless strain amplitude *h*

 $h \sim 0.5$ in this illustration

Michelson interferometer

Advanced LIGO

Detection of gravitational waves is an experimental feat! Also have to address challenging data analysis problems

GW150914 detected on Sep 14 2015 9:50:45 UTC

The signal was observed with a matchedfilter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 eventper 203000 years, equivalent to a significance greater than 5.1σ .

Announced yesterday!

GW151226 detected on Dec 26 2015 03:38:53 UTC

PRL 116, 241103 (2016) PHYSICAL REVIEW LETTERS 17 GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence B. P. Abbott *et al.** (LIGO Scientific Collaboration and Virgo Collaboration) (Received 31 May 2016; published 15 June 2016)

We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a significance greater than 5σ . The signal persisted in the LIGO frequency band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35 to 450 Hz, and reached a peak gravitational strain of $3.4^{+0.9}_{-0.9} \times 10^{-22}$. The inferred source-frame initial black hole masses are $14.2^{+8.3}_{-3.7}M_{\odot}$ and $7.5^{+2.3}_{-2.3}M_{\odot}$, and the final black hole mass is $20.8^{+1.7}_{-1.7}M_{\odot}$. We find that at least one of the component black holes has spin greater than 0.2. This source is located at a luminosity distance of 440^{+180}_{-190} Mpc corresponding to a redshift of $0.09^{+0.03}_{-0.04}$. All uncertainties define a 90% credible interval. This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.

DOI: 10.1103/PhysRevLett.116.241103

The signal was initially identified within 70 s by an online **matched filter search** targeting binary coalescences.

Will concentrate on first event to introduce GW data analysis

Outline

Primer on gravitational waves **Forewords: Filtering for visualization** Searches: principles and methods Time-frequency excess power / coherent Matched filtering / coincidence Non-Gaussian noise and "glitches" Statistical significance Parameter estimation and waveform reconstruction **Bayesian** inference

Filtering out signal from noise (1)

Filtering out signal from noise (2)

Outline

Primer on gravitational waves Forewords: Filtering for visualization Searches: principles and methods Time-frequency excess power / coherent Matched filtering / coincidence Non-Gaussian noise and "glitches" Statistical significance Parameter estimation and waveform reconstruction **Bayesian** inference

Searches for transient gravitational waves

Search for rare transients with low signal to noise ratio

Expected signal is unknown

Search transients appearing in phase in all detectors with no waveform prior

Time-frequency excess power

Expected signal is known

Targeted search signature of binary black-hole merger as predicted by general relativity

Matched filtering

Time-frequency excess power: basic ideas

Coherent WaveBurst (1)

Time frequency representation(s)

- Projection on bases of functions reasonably localized in time and frequency
- Wilson transforms (modification of Gabor transforms orthonormal bases)
- Several decompositions at different time scales

S. Klimenko et al., arXiv:1511.05999

Coherent WaveBurst (2)

Combine multi detector data

- **Coherent** analysis: compensate for time delay and phase shift and sum
- Similar to beamforming in phased array radiotelescopes
- Retain time-frequency pixels that are "phase coherent"
- Fast and robust algorithm
 - Event detected with 3 minutes latency
 - General relativity not needed!

Can detect unexpected sources

Outline

Primer on gravitational waves Forewords: Filtering for visualization Searches: principles and methods Time-frequency excess power / coherent Matched filtering / coincidence Non-Gaussian noise and "glitches" Statistical significance Parameter estimation and waveform reconstruction **Bayesian** inference

Matched filtering: basic ideas (1)

Correlate data with expected signal

Matched filtering: basic ideas (2)

Template from astrophysical model

- Characteristic chirp waveform
- Encodes system dynamics
 - Inspiral
 - Leading order: chirp mass
 - Next to leading order: mass ratio, spin (assumed aligned with orbital angular momentum)
 - Merger and ringdown
 - Governed by final black-hole mass and spin
- 11 parameters total
 - 4 mass and (aligned) spins, and geometrical params (no excentricity)

Matched filtering: basic ideas (3)

Template bank

Detect **any signal** in a **space of possible signals** all with different phase evolution

Do it with a **finite set of templates**!

Make sure there is a "close" template for every part of the signal space

250 000 templates covers BNS, NS-BH, BBH

Matched filtering: basic ideas (4)

Robust to non-Gaussian noise

- χ^2_r test that checks consistency of spectral power distribution
- Detection statistic

 $\hat{\rho} = \rho \left\{ \left[1 + (\chi_r^2)^3 \right] / 2 \right] \right\}^{-1/6}$

Combine multi detector data

- Triggers generated from each detector independently
- Coincident in time and mass/spins

Outline

Primer on gravitational waves Forewords: Filtering for visualization Searches: principles and methods Time-frequency excess power / coherent Matched filtering / coincidence Non-Gaussian noise and "glitches" Statistical significance Parameter estimation and waveform reconstruction **Bayesian** inference

GW150914

Glitches can mimic gravitational waves

arXiv:1602.03844

Credits: Coughlin, Smith et al, Gravity-spy zooniverse.org

Mitigating glitches

- Monitor instrument and environment
 - 200 000 aux. channels
 - Seismometers, microphones, magnetometers, ...
 - Coupling between the environment and h(t)
- Data quality flags

Outline

Primer on gravitational waves Forewords: Filtering for visualization Searches: principles and methods Time-frequency excess power / coherent Matched filtering / coincidence Non-Gaussian noise and "glitches" Statistical significance Parameter estimation and waveform reconstruction

Bayesian inference

Estimate noise background

- What is the chance that this event is noise? (i.e., the event statistical significance)
 - Probability that glitches occur in coincidence at both detectors
 - Challenging to measure the experimental background
 - Non-Gaussian noise (glitches) is impossible to model
 - **Can't shield the detector** from gravitational wave!
 - Estimate background to high-significance (*p-value* < 10⁻⁶)
 For comparison: glitch occurrence ~1–10% of observation time

Empirical estimate from the data – resampling

- Data time-stamps are artificially shifted by an offset much larger than the inter-site propagation time
- Repeat this operation million times with different offsets

Analysis results for GW150914

Binary coalescence search Matched filtering

Generic transient search Time-frequency excess power

Analysis results for GW151226

Binary coalescence search Matched filtering

Generic transient search Time-frequency excess power

Not reliably detected by generic transient searches

- Lower SNR
- Longer signal power distributed over a larger time-frequency region

Outline

Primer on gravitational waves Forewords: Filtering for visualization Searches: principles and methods Time-frequency excess power / coherent Matched filtering / coincidence Non-Gaussian noise and "glitches" Statistical significance **Parameter estimation and** waveform reconstruction **Bayesian** inference

Beyond detection: Parameter estimation

- Recall: 11 params ; 4 for mass and spins & geometry
- Matched filtering search offers **crude** parameter estimates
 - From best matching template: point estimates for mass and spins obtained separately at each detector

Beyond detection: Parameter estimation

- Joint and **coherent** analysis of multi-detector data
- Parameter estimation using **Bayesian inference**

 $posterior \ p(param|data) = \frac{p(param) \ p(data|param)}{p(data)} \quad \begin{array}{l} \mbox{likelihood (obs model)} \\ prior \ (assumptions) \end{array}$

• Marginalization requires computing high-dimensional integrals

$$p(\theta_1 | \text{data}) = \int p(\{\theta_k\} | \text{data}) d\theta_2 \dots d\theta_n$$

- Use Monte-Carlo! (stochastic sampling)
- Samplers e.g., Markov Chain Monte Carlo series of $\{\theta_k\}$ representative of posterior distribution

Beyond detection: Parameter estimation

Uniform prior in mass $m_{1,2} \in [10, 80] M_{\odot}$ with $m_1 > m_2$

Beyond detection: Waveform reconstruction

Estimate *t*, *f*, *duration* coordinates of **wavelets that fit the observations coherently in both detectors**

Very good agreement with best-fit search template and prediction from numerical relativity – **No excess detected in residual**

Observe amplitude decay consistent with damped oscillations of relaxing black hole – but low SNR \rightarrow no reliable reconstruction

Conclusions

Gravitational-wave data analysis reached maturity

- More than 20 years of research
- Succeed in reliably detecting GW150914 and GW151226!
- Interdisciplinary endeavor: Physics (from signal modelling to detector physics) ; Maths, stats, signal processing ; computer science

Beginning of a long story!

 More/other sources to discover (NS!)

Opens new challenges!

- **Digging deeper**: tractable, fully coherent all-sky searches for binary coalescences
- Cover a larger signal space: long (> 10 s) transients
- Rapid event reconstruction for multimessenger astronomy: fast Bayesian inference
- Better noise/glitch rejection: deep learning?
- Beyond gravitational-wave physics
 - Cosmology with BBH as standard candles?