

University of East Anglia Norwich England

Some slides are recycled from talks given by Eamonn Keogh

	r
ac 🧉 T ×	J
û 🎴 Tony Bag Bagnall 🙀 Save »	,
ssification / Tir	
	ļ
-	
~	
>	
	Ą

9

 $\boldsymbol{\nu}$

₫

4

÷

development

examples

🖿 filelO

papers

utilities weka

tsc algorithms

UEA Research in Cmp Sci

The school is organised into three laboratories:

- Computational Biology
- Graphics, Vision and Speech
- Machine Learning and Statistics

Within these labs research is carried out on computational biology, speech processing, computer graphics, computer vision, colour processing, data mining, optimisation, machine learning and statistics.

I am in the machine learning and statistics group. My main area of research interest is time series data mining, with particular focus on time series classification

Tony's Research Goals

1. Find the best algorithms for classifying time series without the application of domain knowledge

2. Develop tools so we can reproduce results and evaluate new algorithms on test problems

3. Make these tools accessible so we can implement solutions for new problems very quickly

3. Develop algorithms that can mitigate the need for domain knowledge

4. Find as many new applications in as wide a range of problems as possible

Time Series Classification

• Time series classification is the problem of building a classifier from a collection of labelled training time series, where each series has m ordered, real-valued observations, and a class label c_i

$$T_i = \langle t_{i1}, t_{i2}, ..., t_{im}, c_i \rangle$$

The problem is to find a function from the space of possible time series to the space of possible class labels.
Informally: given T_i, can we predict c_i?

TSC Variants

- Very long series
- Streaming data
- Different length series
- Multivariate series
- Ordinal series
- Semi-supervised learning etc

Assume independent series the same length. Univariate, real valued and tractable.

I don't do any of that yet

UCR/UEA TSC Repository

Currently contains 85 datasets from a wide range of problems

€Ð	Mttp://www.timeseriesclassification.com/dataset.php		ନ - ୯ 🏉 Tim	e Series 🗙	🥭 faculty.ucr.edu 🛛 🧔 1	TonyBagnall / T	े 🛠 🔅
File Edi	it View Favorites Tools Help						
x Goo	gle UEA logo		👻 😽 s	earch 🔸 🐺 S	hare More » G+1 0	📋 🚊 Tony Bagı	nall 🕶 🔌 🕶
🗴 😐 Ro	oboForm 🔻 Search 🔹 🚽 😽 Logins 👻 🗌	7 Bookmarks 🔻 🖕 (logins) 🛛 💼 Tony	Bagnall 🛛 🕌	Save 🍯 Generate 🏠 Ho	ome	
	Dataset listing						
	All the data sets in ARFF format can be downloaded	d from <u>here</u> . (file is	3 724mb size)				
	Dataset	Train Size	Test Size	Length	No. of Classes	Туре 🔻	
	+ +	+ +	+ +	++	+ +	+ +	
	Adiac	390	391	176	37	IMAGE	
					_		
	ArrowHead	36	175	251	3	IMAGE	

470

5 SPECTRO

Most TSC problems are not ordered by time

30

Beef

CinCECGtorso	40	1380	1639	4	ECG
Coffee	28	28	286	2	SPECTRO

TSC	UCR/U	EA Ro	eposi	tory
				✓

		Train Size		Length		Nos Classes
	Count	Min	Max	Min	Max	Max
IMAGE	29	16	1800	80	2709	60
SENSOR	18	20	3636	24	1639	39
MOTION	14	36	896	150	1882	12
SPECTRA	7	28	613	234	570	5
DEVICE	6	250	8926	96	720	7
ECG	6	23	1800	82	750	42
SIMU	5	20	1000	60	1024	8

Arrow Heads, Yoga, Words/letter, Shapes (MPEG7)

Brain scans (3D voxels), may best be thought of as time series...

Wang, Kontos, Li and Megalooikonomou ICASSP 2004

Sensor (18)

 Insect wing beats, Car Engines, Phonemes (sound), Worm Motion

Spectra (7)

 Beef, Coffee, Ham, Meat, Olive Oil, Strawberry, Wine. All from BBSRC Institute of Food Research, Norwich Research Park

New project with the Scotch Whisky Research Institute on classifying whisky as forged or genuine

Electric Devices (6)

• Electric device measurements (from a study by the UK Energy Savings Trust "Powering the Nation") http://www.energysavingtrust.org.uk/resources/our-research-and-reports

New project: what level of granularity of data do you need to detect faulty equipment?

ECG (6)

• ECG abnormality detection, computers in cardiography challenges, physionet data sets

So Why is TSC Hard?

• Large attribute space Problems • Correlated features observable in all Redundant features ulletclassification problems Autocorrelation structure ulletProblems specific Imbedded models, phase ulletto ordered series independent feature Misallignment \bullet Very diverse set of lacksquareproblems

COTE the Collective of Transform Ensembles

3Year EPSRC responsive mode grant started May 2015

AIMS: Develop and assimilate new algorithms for time series classification

OBJECTIVE 1: Establish what is the best current technique for TSC

See "The Great Time Series Classification Bake Off: An Experimental Evaluation of Recently Proposed Algorithms. Extended Version" https://arxiv.org/abs/1602.01711 (under review)

Time Series Classification with COTE: The Collective of Transformation Based Ensembles IEEE Trans KDE http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7069254&tag=1

Approaches to TSC

Full series methods

Vector based, Elastic distance measures First order difference distance measures

Phase dependent subseries methods (intervals)

Find intervals of the series with discriminatory features.

Subseries distribution methods (dictionary)

Count the occurrence of similar subsequences, then classify based on these counts

Phase independent subseries methods (shapelets)

Find subsequences that can occur anywhere and define class membership

Model based approaches

Fit model (e.g. spectral, autoregressive, HMM), measure similarity between series as similarity between models

Ensemble techniques

– All of the above

1. Full series methods

Match all of one series to another with a similarity measure

Whole series similarity measure used to classify

Euclidean distance

 $d(A,B) = \sqrt{\sum_{i=1}^{n} (a_i - b_i)^2}$

Used with a distance based classifier (e.g. nearest neighbour, support vector machine). Often used as a benchmark, but really not very good. Outperformed by standard classifiers

Two examples of starlight curves described in **Finding anomalous periodic time series**, Rebbapragada et al, Machine Learning, 2009

"1NN-DTW is very hard to beat" Xi et al. "Fast time series classification using numerosity reduction." *Proceedings of the 23rd international conference on Machine learning*. ACM, 2006.

"Dynamic Time Warping (DTW) is remarkably hard to beat as a time series distance measure"

Shokoohi-Yekta et al. "On the Non-Trivial Generalization of Dynamic Time Warping to the Multi-Dimensional Case." Proc. SIAM Int. Conf. on Data Mining, Vancouver, British Columbia, Canada, April. 2015.

"There is increasing evidence that the classic Dynamic Time Warping (DTW) measure is the best measure in most domains. It is difficult to overstate the ubiquity of DTW" Rakthanmanon et al. "Data Mining a Trillion Time Series Subsequences Under Dynamic Time Warping." *IJCAI*. 2013.

First Order Differences $d_i' = d_i - d_{i-1}$

And then continue as before with some distance function

Variants:

Derivative DTW (DD_DTW) Gorecki et al. Data Mining and Know. Disc., 2013

Weighted derivative DTW (WDDTW) Y. Jeong et al. Pattern Recognition, 2011

Transform differences (DTD_C). Gorecki et al. Data Mining and Know. Disc., 2014

Complexity Invariant Distance(CID) Batista et al. Data Mining and Know. Disc., 2014

J. Lines and A. Bagnall. "Ensembles of elastic distance measures for time series classification." SIAM International Conference on Data Mining, 524-532 (2014).

J. Lines and A. Bagnall. *"Time series classification with ensembles of elastic distance measures." Data Mining and Knowledge Discovery* 29.3 (2015): 565-592.

Approaches to TSC

Full series methods

Vector based, Elastic distance measures First order difference distance measures

Phase dependent subseries methods (intervals)

Find intervals of the series with discriminatory features.

Do we need the whole series?

Take intervals Calculate features on intervals Construct classifiers

2. Phase dependent subseries methods

Find intervals of the series with discriminatory features.

Sample intervals multiple times and construct and ensemble of classifiers

Time Series Forest (TSF) Deng et al. Information Science, 2013

Time Series Bag of Features (TSBF) Baydogan et al. IEEE Trans. PAMI 2013

Learned Pattern Similarity (LPS) Baydogan et al. Data Mining and Know. Disc., 2015

Approaches to TSC

Full series methods

Vector based, Elastic distance measures First order difference distance measures

Phase dependent subseries methods (intervals)

Find intervals of the series with discriminatory features.

Phase independent subseries methods (shapelets)

Find subsequences that can occur anywhere and define class membership

Work derived from

L. Ye and E. Keogh. Time series shapelets: A new primitive for data mining. In Proc. 15th ACM SIGKDD, 2009

A. Mueen, E. Keogh & N. Young, N. Logical-shapelets: an expressive primitive for time series classification. In Proc. 17th ACM SIGKDD, 2011

3. Phase independent subseries methods

Find subsequences that can occur anywhere and define class membership (shapelets)

Approaches to TSC

Full series methods

Vector based, Elastic distance measures First order difference distance measures

Phase dependent subseries methods (intervals)

Find intervals of the series with discriminatory features.

Subseries distribution methods (dictionary)

Count the occurrence of similar subsequences, then classify based on these counts

Phase independent subseries methods (shapelets)

Find subsequences that can occur anywhere and define class membership

Techniques inspired by information retrieval

4. Subseries frequency methods (dictionary based)

Count the occurrence of similar subsequences, then classify based on these counts

Series 0.5 Bag of Patterns (BOP) Lin et al. In Journal of Intelligent Information, 2012. -0.3L SAX-Vector Space Model (SAX-VSM) Senin et al. 13th ICDM, 2013 -0.5 Bag-of-SFA-Symbols (BOSS) Schäfer, Data Mining and Knowledge Discovery, 2015 odb bdb bdb bdb bdb bdb bdb bdb ----ccc ccc ccc ccc ccc ccc cab cab cab cac dbc dbd cac cac cac cac cac cac cac bab bab bab bab bab abb abb abb abb abb Word counts for histograms (d)

Counts

on histogram

similarity

Approaches to TSC

Full series methods

Vector based, Elastic distance measures First order difference distance measures

Phase dependent subseries methods (intervals)

Find intervals of the series with discriminatory features.

Subseries distribution methods (dictionary)

Count the occurrence of similar subsequences, then classify based on these counts

Phase independent subseries methods (shapelets)

Find subsequences that can occur anywhere and define class membership

Model based approaches

Fit model (e.g. spectral, autoregressive, HMM), measure similarity between series as similarity between models

Ensemble techniques

– All of the above

The Great Time Series Classification Bakeoff

- One of the largest ever studies in machine learning
- 22 competing TSC algorithms from top-tier journal and ٠ conference papers implemented in a common framework
- All run on 100 resamples of the 85 UCR datasets
- Over 30 million individual experiments •
- Completely reproducible and transparent •

All code and results publicly available: <u>www.timeseriesclassification.com</u>

NT-11 1		Dronor	tion of		Average difference
mean difference	is	problem	in accuracy		
zero		DTW			
		↓ ↓			
Algo P V	Value P	Prop N	lean	12 0	ignificantly batter than DT
COTE	0.00	96.47%	8.12%	12 8	Significantly better than DT
EE	0.00	95.29%	3.51%	r	r ·
BOSS	0.00	82.35%	5.76%		Large improvement
ST	0.00	80.00%	6.13%		ST, BOSS, EE and COTE
DTW_F	0.00	74.70%	2.65%		, ,
TSF	0.00	68.24%	1.91%	Sm	all improvement
TSBF	0.00	65.88%	2.19%		
MSM_1NN	0.00	62.35%	1.89%	LP	S,MSM, TSF, TSBF and
LPS	0.01	61.18%	1.83%	ТЛ	TW F
WDTW_1NN	0.03	60.00%	0.20%		
DTD_C	0.05	52.94%	0.79%		Very minor improvement
CID_DTW	0.03	50.59%	0.54%		CID DTD and WDTW
DD_DTW	0.24	56.47%	0.42%		CID, DID and WDI W
RotF	0.49	56.47%	-0.02%		
TWE_1NN	0.83	49.41%	0.37%	l	
LS	0.03	47.06%	-2.99%		
SAXVSM	0.00	41.18%	-3.29%		Significantly worse
BOP	0.00	37.65%	-3.05%		than DTW
FS	0.00	30.59%	-7.40%		

All code and results publicly available: <u>www.timeseriesclassification.com</u>

Where Next for COTE?

- 1. MORE DATA
- 2. Better fusion strategy
- 3. Better use of autocorrelation function
- 4. Better weighted ensemble
- 5. Scalable
- 6. Multidimensional

	://www.timeseriesclassification	.com/				오 - ㅎ 🎑 Time S	eries Classific	ation ×		
Time S	Series Classification	Home	Dataset	Algorithms	Results	Researchers	Code	Bibliography	About Us	
		TIME	SERIES	CLASSIFI	CATION	WEBSITE:	WORK	IN PROGRI	ESS	
	For supportin	ng informa	tion for the	paper "The gre	eat time se	ries classification	n bake-off	" go to this tem	porary holding	page.
This website is an ongoing project to develop a comprehensive repository for time series classification. It includes data sets, information on researchers in the field, relevant publications and algorithms. We have implemented many of these algorithms within the WEKA framework. The code is here. This website is supported by the UK Engineering and Physical Sciences Research Council (EPSRC) [grant number EP/M015087/1] (more info). For more information about this work, look at the about us page. For information about citation and publication of data, review our page at Citation Policy. Any questions, please email us										
on tony	AT timeseriesclassificat	tion.com								

