Optical bench design for the caraterization of distortions in LSST candidate sensors

Rémy Le Breton - Pierre Antilogus and Nicolas Regnault

LPNHE

Biennale LPNHE - Tirrenia - 2015/10/07

LSST sensors: Charged Coupled Devices

- $4 \mathrm{~cm} \times 4 \mathrm{~cm}$ CCD.
- 16.4 megapixel.
- Focal plane $=189$ CCD .
- "Thick CCD", more sensitive in I.R.

CCD E2V-250

$$
\begin{gathered}
\text { Plazas et al. } 1403.6127 \\
\text { DECam CCD }
\end{gathered}
$$

Guyonnet et al. 1501.01577

- Variation can reach $\pm 1 \%$ on normalized flat-field (g -band).
- Variation in size reaches almost 2% from zero to saturation for LSST E2V candidates.

Simulation validation : results

x component of the true $\vec{\delta}$

x component of the fitted $\vec{\delta}$

- Reconstruction of a $\vec{\delta}$ of 0.01 pixel RMS ?
- Good final χ^{2}.
- Validation of the method : we can map static distortions.

Optical bench

- Experiments done in clean room.
- Setup inside a black box.
- XYZ and rotating motor.
- Pixel pitch of fringes from 6 to 13 px and from 15 to 25 px .
- Using test targets. (transmission sinusoïdal pattern + Ronchi)
- Canon lens + integrating sphere.

- Study of the Brighter fatter: development of a new method of measurement, and comparison with canonic one (Augustin Guyonnet's measurement of correlations).
- Study and improvement of the stability of the optical bench.

Photon Transfert Curve (PTC)

Correlations of nearest pixels

Correlations : 2 pairs of uniform illimuminations

Correlations : 420 pairs of uniform illimuminations

Optical bench stability

- Laser $=$ coherent light $->$ false correlations...
- Meanwhile, using spectral lamp : XeHg and QTH.
- Stability of the lamps.
- Stability of focus as a function of the position.
- Vibrations.
- Stability of positions.

Brighter Fatter : ramps in flux

- Imaging fringes parallel to rows and columns.
- Images with pixel pitch of 6.4 px (Setup 2 with Ronchi target).

Cut on Ronchi parallel to row

- First step : select focused fringes area ($500 \times 500 \mathrm{px}$).
- Second step : compute pitch with a fit of FFT maximum.
- Third step : fold (wrt the computed pitch) the signal of several columns.
- Fourth step : bin the folded signal (right plot).

