Summary of the second year work Diphoton+ E_T^{miss} search

Stefano Manzoni INFN - Sezione di Milano, LPNHE - Paris

Stefano Manzoni (INFN-MI, LPNHE-Paris)

Second year work summary

7th October 2016 1 / 10

Introduction

- Supervisors: Dr. Leonardo Carminati and Dr. Giovanni Marchiori
- Co-tutorship with the Università degli studi di Milano
 - PhD started in October 2014 Fall 2017 (expected)
 - In Paris from November 2015 to December 2016
- Major project: Search for supersymmetry in event with two photons and high E_T^{miss}
- First year (Milan):
 - qualification task: multivariate energy calibration for electrons and photons
 - Prepare the $\gamma\gamma$ +MET analysis samples and tools:
 - Monte Carlo (MC) samples validation/request/production
 - data-analysis framework
 - statistical framework
- Second year (Paris):
 - Finalised the analysis:
 - Result
 - Paper, of which I am an editor
 - e/γ performace:
 - keep collaborating with calibration team
 - Diphoton resonance at high-mass: MC Sherpa NLO $\gamma\gamma$ validation
- Feb 2015-April 2016 co-supervision of the thesis of a master student in Milan

(日) (同) (目) (日)

Supersymmetry

• Supersymmetry:

- new bosonic field to each SM fermion.
- new fermionic field to each SM gauge boson.
- \rightarrow Solve the Higgs/hierarchy problem.
- $\rightarrow\,$ In Susy the unification of the coupling costants is far more precise than in Standard Model assumption.
- \rightarrow Dark matter: Lightest Stable Particle (LSP) SUSY particle (with R-parity conservation).

A = A = A = A
 A
 A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Search for a signal from SUSY GGM models
 - Lightest Stable Particle (LSP): Gravitino (G).
 - Next to LSP: Neutralino $(\tilde{\chi}_1^0)$.
- The neutralino is assumed to be purely bino-like (the SUSY partner of the SM U(1) gauge boson):
 - the final decay in each of the two cascades it would be predominantly: [~]χ⁰₁ → [~]G + γ.
- Final state $\rightarrow \gamma \gamma + E_T^{miss}$.
- The mass of the neutralino is treated as a free parameter m_{χ̃} ∈ (0 GeV, m_{g̃}).
- Prompt decay $ilde{\chi}_1^0
 ightarrow ilde{G}\gamma$ (c au < 0.1 mm).
- RUN1 analysis set a lower limit on m_{g̃} at 1340 GeV (PhysRevD.92.072001).

(日) (同) (目) (日)

- QCD background (instrumental $E_T^{miss} + 1$ or 2 real photons):
 - SM $\gamma\gamma$, $\gamma+jet$
- Electroweak background (genuine $E_T^{miss} + 1$ real photon)
 - W+ γ (W \rightarrow e ν), Z+ γ (Z \rightarrow $\tau^{+}\tau^{-}$), $t\bar{t}$ + γ (t \rightarrow be ν)
- Irreducible background (genuine $E_T^{miss} + 2$ real photons):
 - Final state identical to the searched signal
 - $Z + \gamma \gamma \ (Z \rightarrow \nu \nu)$
 - W+ $\gamma\gamma$ (W $\rightarrow e\nu$)
- Discriminant variables:
 - $p_T^{\gamma} > 75$ GeV.
 - $E_T^{miss} > 175$ GeV.
 - Δφ(jet, E_T^{miss}) > 0.5, to reduce fake E_T^{miss} contribution.
 - $m_{eff} > 1500$ GeV, scalar sum of H_T (=total transverse energy of all visible objects) and E_T^{miss} .

• E_T^{miss} and m_{eff} distributions after p_T^{γ} and $\Delta \phi$ requests

Data and Analysis strategy

- RUN2 2015 data: $\sqrt{s} = 13$ TeV and L = 3.2 fb⁻¹
- Cut and count analysis:
 - Signal Region optimisation
 - Background evaluation:
 - SM contribution
 - Evaluation in Control Region (orthogonal to SR) with data-driven/MC methods
 - Validation Region
 - Statistical comparison of Expected (bkg) events vs. Observed

Stefano Manzoni (INFN-MI, LPNHE-Paris)

- EW background accounts for SM contributions mainly from W(W \rightarrow e ν) γ , $t\bar{t}\gamma$, Z(W \rightarrow ee/ $\tau\tau$) γ .
- Evaluated rescaling the number of events in a control region defined as SR but which requests to have exactly one photon and at least one electron with $p_{\tau}^{\gamma} > 75 \text{ GeV}$

$$N_{e
ightarrow \gamma}(p_{\mathrm{T}},\eta,x) = F_{e
ightarrow \gamma}(p_{\mathrm{T}},\eta) imes N_{e\gamma}(p_{\mathrm{T}},\eta,x)$$

where $F_{e \to \gamma}(p_T, \eta)$ is measured starting from a Z \to ee data sample as the ratio of the number of the selected a ee and $e\gamma$ couples (see next slide). e -> γ fake

The contribution to SR is 0.03 ± 0.02

p _T (e)	$\eta(e)$	$p_T(\gamma)$	$\eta(\gamma)$	Η _T	E_T^{miss}	$F_{e \rightarrow \gamma}$
113	-0.606	88	-1.849	1606	186	0.019
166	0.581	105	-1.273	1033	586	0.012

- Good agreement between background prediction and observed data.
- Model-independent 95% CL upper limit of 3.0 events (0.93 fb) on the number of beyond SM events (visible cross section).
- 95% CL lower limit are set on m_{g̃} at 1650 GeV (1340 at 8 TeV).

Source	Contribution [Events]
QCD ($\gamma\gamma$, γ j, jj)	$0.05^{+0.20}_{-0.05}$
$e ightarrow \gamma$ fakes	0.03 ± 0.02
$W\gamma\gamma$	0.17 ± 0.08
$Z\gamma\gamma$	0.02 ± 0.02
Sum	$0.27^{+0.22}_{-0.10}$
$(m_{ ilde{g}}, m_{ ilde{\chi}^{m{0}}}) = (1500, 100)$	7.0
$(m_{\tilde{g}}, m_{\tilde{\chi}_{1}^{0}}) = (1500, 1300)$	8.0
Data	0

- The diphoton+ E_T^{miss} result using 3.2 fb⁻¹ have been published (paper accepted by EPJC, link arXiv).
- $\rightarrow\,$ Update the analysis with 2016 data
 - expand the search for other different production of the $\gamma\gamma + E_T^{miss}$ final state.
 - Precise measurement of the SM Higgs mass.
 - Performance: energy calibration of e/γ .

イロト イポト イヨト イヨト

Look for new physics everywhere!

Stefano Manzoni (INFN-MI, LPNHE-Paris)

• • • • • • • • • •