

ATLAS@LPNHE: Higgs boson & New Physics with photons - status and plans

G. Marchiori ATLAS group

Biennale du LPNHE 04 October 2016

Group composition

6 permanents:

Name	Position	HDR	fraction of research time
Bertrand LAFORGE	PR	Yes	90%
Sandrine LAPLACE	CR	Yes	100%
Giovanni MARCHIORI	CR	Yes	40%
Irena NIKOLIC	MdC	Not yet	100%
Jose OCARIZ	PR	Yes	100%
Lydia ROOS	DR	Yes	100%

1 post-doc:

Name	Funding	Dates	fraction of research time
Renjie WANG	ILP	04/2016-05/2019	100%

• 5 students:

Name	Year	Subject	Supervisor	Funding	Dates	Fraction
Yee YAP	3	high-mass γγ resonances	L. ROOS	ED STEP-UP	12/2013 12/2016	100%
Alvaro LOPEZ SOLIS	3	dark matter search in H(γγ) +MET	B. LAFORGE	ED STEP-UP	10/2014 10/2017	100%
Stefano MANZONI	3	new physics in γγ +MET	G. MARCHIORI	ITALIE (co- tutelle)	10/2014 10/2017	100%
Pierre LUZI	3	Higgs CP	J. OCARIZ	ED STEP-UP	12/2014 ?	100%
Ahmed TAREK	1	H-> γγ xsection measurements	S. LAPLACE	ED STEP-UP	10/2016 10/2019	100%

⁺¹ thesis defended in 07/2014 (K. LIU, co-supervised by GM, winner of the ATLAS and FCPPL thesis awards, on Photon identification efficiency measurements and searches of $H\rightarrow yy$ and $H\rightarrow Zy$)

+ some contributions also from Bogdan, Paolo, Ilaria fovanni Marchiori ATLAS@LPNHE photon group: results and plans - 04/10/2016 Giovanni Marchiori

Group "trombinoscope"

Yee

Alvaro

Stefano

Pierre

Ahmed

Ren-Jie

Giovanni

Irena

Bertrand

Lydia

Jose

Why studying the Higgs boson?

- Without the Higgs mechanism (or some alternative), particles are predicted to be massless by SM; weak and electromagnetic force are unified
- Particles acquire a mass though their interaction with the Higgs field

- In SM, once the Higgs boson mass is fixed, all other properties of the Higgs boson are well determined => can make accurate theory predictions and compare to experiment
- Outside of SM Higgs boson may have different production/decay properties or there may be multiple Higgs bosons

Why searching for beyond SM physics (BSM)?

No dark matter candidate in Standard Model

- Insufficient sources of CP violation (baryonic asymmetry)
- •
- One possible solution (not the only one!): SUperSYmmetry (see Stefano's talk)

The situation at the last biennale (May 2014)

• Higgs boson discovered in Run1, properties (couplings, JP) consistent with SM

Masse combinée multi-canaux : $m_H = 125.5 \pm 0.2$ (stat.) ± 0.6 (syst.) GeV

- LHC off since beginning of 2013 for 2 years of consolidation activities on accelerator and detectors.
- Main goals for Run2: higher energy and luminosity

Why higher pp collision energy?

Integrated luminosity in Run2

Activities of the past 2.5 years

- Consolidation/conclusion/publication of Run1 Higgs boson measurements, (including combination with CMS - not done by our group)
- Preparation of Run2 analyses with photons (H→γγ and more)
 - optimisation of photon reconstruction, identification and isolation algorithms
 - preparation of analysis tools, MC samples, optimisation of analysis strategy...
- Analysis of the first √s=13 TeV LHC data for winter and summer '16 conferences
 - measurement of photon performance (identification and isolation efficiency, electron→photon fake rate)
 - search for BSM resonances: photon+jet, diphoton and photon+Z
 - search for new physics in final states with two photons and large transverse missing energy (from non-interacting particles)
 - measurement of H(125) properties combining H→γγ and H→ZZ*→4I

Consolidation of the Run1 discovery

- 5.2 σ excess observed in $\gamma\gamma$ by ATLAS, agrees with SM (μ =1): μ =1.17±0.27
- no evidence of rare decay to $Z\gamma$ (μ <11)

Consolidation of the Run1 discovery (II)

mass measured to 0.2% by ATLAS+CMS ($H\rightarrow \gamma\gamma + H\rightarrow ZZ^*\rightarrow 4I$)

couplings to SM particles in good agreement with SM predictions (10%)

precision for W, Z; worse for others)

Photon performance in Run2 (I)

- e/ γ isolation (discriminate photons from hadronic jets looking at energy around the photon):
 - ATLAS-wide harmonisation effort between analyses before start of Run2
 - measured data-MC corrections and data/MC efficiency scale factors with inclusive prompt photons (+Z→II_γ and Z→ee) in Run2 data
- photon identification (discriminate photons from hadronic jets looking at shower shape):
 - retuned criteria for Run2 data-taking
 - measured data/MC photon efficiency scale factors (Z→IIγ, Z→ee, prompt photons) in Run2 data
 - measured $e \rightarrow \gamma$ misidentification rate in data with $Z \rightarrow ee$
- e/γ energy calibration:
 - performed training of MVA regression on MC

Photon performance in Run2 (II)

- photon energy scale:
 - measured photon energy scale with Z→Ilγ ——
 decays in full 2015 data; uncertainties ~few per
 mil
- cross-talk in LAr calorimeter:
 - used special calibration runs to extract maps of cross-talk corrections
 - subtract x-talk contribution from measured cell energies to improve photon energy, timing and shower shape information (quantification of improvements in progress)
- photon conversion reconstruction efficiency:
 - technique developed and efficiency measured with Run1 data (fit data shower shapes of recoconverted and reco-unconverted photons with templates from truth), study on Run2 ongoing

	E_1/E_2			BDTG (E ₁ /E ₂ + R ₄)		
η	fFake	fReco	fFake	fReco		
η < 0.6	0.013 ± 0.006	0.921 ± 0.047	0.015 ± 0.003	0.890 ± 0.013		
$0.6 < \eta < 1.37$	0.029 ± 0.005	0.801 ± 0.023	0.027 ± 0.005	0.804 ± 0.009		
$1.52 < \eta < 1.8$	0.009 ± 0.015	0.918 ± 0.030	0.015 ± 0.018	0.906 ± 0.019		
$1.8 < \eta < 2.37$	0.006 ± 0.007	0.568 ± 0.014	0.013 ± 0.009	0.565 ± 0.013		

Exotic resonance searches with 13 TeV data

- γγ and Zγ resonances can be produced for instance in models with extra Higgs bosons (like SUSY, 2HDM, ...) or with extra dimensions (Randall-Sundrum graviton ..)
- γ+jet resonances can be produced for instance from excited quarks (q*→qγ) or microscopic quantum black holes predicted by extra-dimension models

Unfortunately, we saw nothing like that in 13 TeV data

so far:(

Ahmed's

talk

Giovanni Marchiori

Exotic resonance searches with 13 TeV data

- γγ and Zγ resonances can be produced for instance in models with extra Higgs bosons (like SUSY, 2HDM, ...) or with extra dimensions (Randall-Sundrum graviton ..)
- γ+jet resonances can be produced for instance from excited quarks (q*→qγ) or microscopic quantum black holes predicted by extra-dimension models
- Unfortunately, we saw nothing like that in 13 TeV data so far :(

BSM physics searches in $\gamma\gamma$ +MET with 13 TeV data

- Searches for two photons and large transverse momentum imbalance from:
 - gauge-mediated supersymmetry models

No signal found in both cases:(

 dark-matter particles produced with a Higgs boson from a dark

BSM physics searches in $\gamma\gamma+MET$ with 13 TeV data

- Searches for two photons and large transverse momentum imbalance from:
 - gauge-mediated supersymmetry models

No signal found in both cases:(

 dark-matter particles produced with a Higgs boson from a dark

The rediscovery of an old friend

• $H \rightarrow \gamma \gamma + H \rightarrow ZZ^* \rightarrow 4I$: 10 σ observed excess at 13 TeV, xsection consistent with SM

Short-term plans

- Main goals for winter 2017:
 - "physics"-wise: convert ICHEP conf notes (high-mass γγ and Zγ, H(γγ)+MET) into papers based on full 2016 dataset (>2x larger dataset)
 - $\gamma\gamma$: test also spin-2 signals
 - Zγ: also include low-mass search (i.e. rare BR of 125 GeV Higgs)
 - extend probed mass range to >2.4 TeV thanks to larger dataset
 - "performance"-wise:
 - use full 2016 data to measure photons isolation and identification efficiency scale factors for all ATLAS photon-based analyses
 - provide some initial in situ e/ γ energy calibration based on full 2016 data; final calibration to be available later in 2017
 - first results on the calibration with x-talk corrections

Longer-term plans

- Exploit full Run2 dataset (~10x larger than in summer 2016, data-taking stops end of 2018) and prepare Run3 analysis
 - searches of BSM physics (high-mass resonances, dark matter in H(γγ)+MET) or rare decays (Zγ): probe ~10x smaller xsections; get close to H→Zy observation
 - measure Higgs boson properties
 - mass (w/ 2016 data at least): aim for ~0.1% uncertainty (combined)
 - simplified & differential cross section measurements
 - plus usual involvement in e/γ performance activities
 - e/γ calibration: study of various systematic uncertainties
 - x-talk: implementation in ATLAS reconstruction code
 - photon ID and isolation efficiency measurements
- Within the framework of a 4-year ANR project "photonportal" starting 01/2017
 - 3 partners (LAPP, LAL, LPNHE)
 - 3rd ANR obtained by the group on these activities in past ~10 years

Differential cross-sections from $H\rightarrow\gamma\gamma$ (and $H\rightarrow4\ell$)

- Several distributions sensitive to various theoretical effects have been measured in Run1 (and in early Run2): QCD modelling in ggF production (p_T^H, y^H), ratios of different production mechanisms (N_{jets}), modelling of partonic radiation in ggF and of jets in VBF and VH events (p_T of leading jet, p_T^{j1})
- Current results: p_T(H) spectrum somewhat harder than predicted

- statistical uncertainties (23%-75%) dominate
- Exploit full Run2 to better investigate this small discrepancy

Constraints on BSM in EFT using differential xsections in $\gamma\gamma$

SM lagrangian augmented with dim-6 operators. Differential xsections in H→γγ mainly sensitive to CP-even and CP-odd operators affecting interactions with: photons (c_γ); gluons, via gluon fusion production (c_g); WW and ZZ via VBF and associated production (c_{HW}, c_{HB}). Other operators have very small impact

$$\mathcal{L} = \bar{c}_{\gamma} O_{\gamma} + \bar{c}_{g} O_{g} + \bar{c}_{HW} O_{HW} + \bar{c}_{HB} O_{HB} + \tilde{c}_{\gamma} \tilde{O}_{\gamma} + \tilde{c}_{g} \tilde{O}_{g} + \tilde{c}_{HW} \tilde{O}_{HW} + \tilde{c}_{HB} \tilde{O}_{HB},$$

• 2D limits on pairs of coefficients after setting other coefficients to SM (c=0)

Longer-term plans: manpower @ LPNHE

 1 post-doc to be recruited in fall 2017 (ANR), to work on analysis of full Run2 data (publications during 2019)

PhD theses:

- fall 2016 (now): Ahmed starting on e/γ calibration + Higgs x-sections
- fall 2017:
 - Lydia (cotutelle w/ USTC): calibration + low/high-mass γγ resonances
 - Bertrand (maybe cotutelle w/ WITS): calibration/x-talk + dark-matter search
 - Jose: Higgs boson properties
 - if cotutelle w/ WITS doesn't work and if only 1 NPAC bourse, consider postponing one of the last two to 2018
- fall 2019:
 - Sandrine: Run3 preparation & analysis of first ~1.5 years of Run3 (~100 fb-1).
 Could be 2 with the usual strategy of cotutelles