

Study of $h \rightarrow bb$ and importance of ATLAS inner tracker upgrade

Audrey Ducourthial

Thesis overview

Thesis subject: Study of decay properties of $h \to b\bar{b}$ and importance of ATLAS inner tracker upgrade for this analysis

Ongoing:

- Development of planar silicon sensors for ATLAS upgrade Tracker (ITK)
 - \Rightarrow Active edge
 - ⇒ Thinner sensors
- Testbeams (CERN and DESY) and Lab tests on unirradiated and irradiated sensors
- Qualification task on actual pixel layers configuration

Soon:

- Study of radiation effects on silicon sensors
- Study of $h o b\bar{b}$
 - \Rightarrow Modification of the b-tagging algorithms for the ITK layout and at a larger pile-up

Testbeam results

Testbeam results 2/8

Sensors Description

FBK production:

- Atlas tracker upgrade
- n on p device
- thickness: 200 μm
- pixel pitch 250 μ m x 50 μ m
- Biased during test thanks to temporary metal

Active edge production:

- Deep Reactive Ion Etching technic
- Most aggressive design: 100 μm from last pixel, 0 GR

Testbeam results 3/8

High Luminosity requirement

Charge collection efficiency \Rightarrow ToT study Efficiency above 99 $\% \Rightarrow$ Global Efficiency Homogeneous efficiency \Rightarrow Pixel efficiency Good spatial resolution \Rightarrow Residuals, Charge sharing

4 Testbeams: * March 2015 at DESY with 4 GeV electrons * July 2015, May & August 2016 at CERN with 120 GeV pions

Testbeam results 4/8

Pixel Efficiency

- * more homogeneous at CERN. Related to reduced MS
- * no permanent bias structures \Rightarrow no permanent hit inefficiencies \Rightarrow uniform charge efficiency

Testbeam results 5/

Edge Efficiency

Testbeam results 6/8

Edge Efficiency

Edge efficiency profile

Simulation of the Electrical field at the edge (Marco)

Velocity is related to E: $v = \mu E$ with μ the mobility Loss of efficiency close to the edge related to the low velocity \Rightarrow Simulation and data are in good agreement

Testbeam results 7/8

Future Plans

Good results in terms of efficiency especially at the edge.

Next steps:

- End of qualification task (Autumn 2016)
- Caracterisation of irradiated sensors ⇒ Testbeam End of October 2016
- Study of radiation effects on silicon sensors
- Study of $h \rightarrow b\bar{b}$
 - ⇒ Modification of the b-tagging algorithms for the ITK layout and at a larger pile-up

Testbeam results 8/8