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Introduction
Motivation  - diphoton channel

• Search for high mass resonances decaying to two photons is motivated 
by several extensions to the standard model (SM) 

2

• Diphoton searches benefit from a very clean experimental signature 
• Two high pT photon candidates reconstructed from energy deposit in the 
calorimeter 
• Resonance appears in the invariant mass spectrum as a local excess of 
events over well-know background of SM direct photon pair production
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Results

Marco Delmastro Diphoton searches in ATLAS 10

2878 events (mγγ > 200 GeV)

SPIN-0 ANALYSIS SPIN-2 ANALYSIS

5066 events (mγγ > 200 GeV)

background-only fit background-only fit

• Using 2015 run-2 data at √s = 13 TeV, both ATLAS and CMS reported a 
moderate excess of events around mass of ~ 750 GeV

2015 2016
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• Diphoton searches benefit from a very clean experimental signature 
• Two high pT photon candidates reconstructed from energy deposit in the 
calorimeter 
• Resonance appears in the invariant mass spectrum as a local excess of 
events over well-know background of SM direct photon pair production
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moderate excess of events around mass of ~ 750 GeV



Categorization  
Overview
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Categorization is the study of data subsamples with specific 
characteristics and analyzing them independently  

Model independent Based on 
detector characteristic  
e.g. η , photon conversion ..etc 

In this case, signal fractions per 
category is determined a-priori 

Model dependent Based on 
resonance dynamics 
e.g. Njets, Missing transverse 
energy ..etc 

Here, signal fractions per category is 
determined from data

•  Enhance the significance 
•  Measure properties of the process 

Data is divided into 4 categories chosen from [0-1-2- ≥3] jets 
• pT > 25 GeV, |η| < 4.4, JVT cuts
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 Study of Jet Multiplicity  
Production Mechanism
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Tuning MP ⇡ MS + MR needed to avoid /pT
. S virtuality can fake S width.

Or large S ! ⇧⇧ with ⇧ ! ��, collimated and seen as a single � if M⇧ ⌧ MS.
Traveling in the detector material, ‘photon jets’ give more � ! e+e�.

Or two nearby narrow resonances. Or N .

Or a QCD bound state of a new quark with M ⇠ 380GeV and obscure decays.

Please show the full energy distribution and the events

Why diphoton searches?
•  Clean signal over smooth and well known background (e.g. H(125)!γγ) 
•  Several extensions of the Standard Model predict high-mass states 

decaying to two photons
•  Benchmark models…

Marco Delmastro Diphoton searches in ATLAS 2

Spin-2 analysis
e.g. Randall-Sundrum graviton

Spin-0 analysis
e.g. extended Higgs sector

•  2HDM
"  5 physical states h0, H0, A0, H±

"  Under certain conditions, scalar and/or 
pseudo-scalar states can have sizable 
branching ratio to diphoton

•  Model predicts tower of Kaluza-Klein 
graviton states with TeV mass scale

•  Phenomenology
"  mG* = mass of lightest KK excitation

"  κ/MPl = dimensionless coupling to SM 
fields 

X

- SM-like Higgs : Gluon-gluon fusion ggH - Effective field theory EFT 

- SM-like Higgs : Vector boson fusion VBF

- Quark-antiquark annihilation

- Photon-photon fusion



Analysis Overview
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• The Likelihood function per event is defined as follows 
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9. Statistical model1069

9.1. Shape Analysis with Analytical Background Shape1070

The data in the high-mass region are described using a per-event likelihood expressed as1071

L(m��;� f id,mX, ↵X, Nbkg, a, ✓) = NX (� f id,mX, ✓NX , ✓SS) fX (m��, xX (mX, ↵X ), ✓�)
+ Nbkg fbkg (m��, a) (29)

where � f id is again the fiducial production cross-section of the new resonance of mass mX ; the a are the1072

background shape parameters; the ✓NX collectively designates the nuisance parameters used to describe1073

the systematic uncertainties, as listed below:1074

• ✓lumi: uncertainty on the integrated luminosity of the data sample;1075

• ✓e f f ,X , ✓isol,X : systematic uncertainties on photon ID and isolation e�ciencies for the new1076

resonance;1077

• ✓SS: spurious signal systematic;1078

• ✓ES: photon energy resolution systematics;1079

• ✓ER: photon energy scale systematics.1080

• ✓cX : production-mode uncertainty on the CX factor defined below.1081

The quantities NX and Nbkg are the number of events from the new resonance and the non-resonant1082

background components respectively. Nbkg is a free parameter in the fit, while NX is parameterized as1083

NX (� f id,mX, ✓NX , ✓SS) = � f id L CX (mX )
|✓NX |Y

n=1
Ki (✓i) + �SS✓SS (30)

where L is the integrated luminosity of the sample; CX (mX ) the value of the CX factor for the considered1084

mass mX , as described in Section 7.1, KX a function characterizing the e�ect of the normalization system-1085

atics; �SS and ✓SS the value of the background modeling uncertainty and its associated nuisance parameter;1086

✓NX the subset of systematic uncertainties a�ecting NX , ✓NX = {✓e f f ,X, ✓isol,X, ✓lumi, ✓CH, ✓ESS }. The1087

Ki (✓i) factors implement each of the systematic uncertainties on the number of signal events listed above.1088

The expression Ki (✓i) = [1 + �i (mX )]✓i is used, where �i (mX ) is the value of the systematic uncertainty1089

at this mass point, as listed in Table 17. This expression ensures that the modifications to the signal event1090

yield for ✓i = ±1 are exactly equal to the ±1� variations used to define the uncertainties. It is implemented1091

using the RooStats::HistFactory::FlexibleInterpVar class, modified to allow mass-dependent1092

values for the uncertainties.1093

The PDFs fX and fbkg are described as:1094

• Signal: fX (m��, xX (mX, ↵X ), ✓�) is the double-sided Crystal Ball shape described in Section 5. Its1095

parameters xX = {mCB = mX + �m,�CB, ↵low, ↵high, nlow, nhigh} are computed as a function of1096

mX , as explained in the same section. The uncertainty on the CB width is applied by using the expres-1097

sion �CB = �0 K� (✓�), where �0 is the nominal width, and K� (✓�) is defined similarly as for the1098

event yield systematics above, K� (✓�) = [�±(mX )]✓� . The �± are CB widths obtained by applying1099

±1� variations to the mass resolution. The RooStats::HistFactory::FlexibleInterpVar1100

23rd March 2016 – 21:13 87

• The number of signal and background events are extracted from 
Likelihood fit on the mγγ distribution  

• Using models of the signal and SM background

• An integer index is added to the likelihood to discriminate the different 
categories ⇒ multiplying the number of fit parameters



Impact of jet multiplicities on significance
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• Compute the expected significance from an injected signal (2.2 fb) 
• The expected significance is computed twice 

• inclusive analysis as done in ATLAS so far and the expected 
significance for the injected cross -section is 2.7 σ 
• Adding jet multiplicity information ( i.e. perform 4 fits instead of 1, 
for Njet=0,1,2,≥3 ) the expected significance is  

• No major change in significance is observed 

ggH qq EFT VBF ƔƔF

combined 2.8 σ 2.8 σ 2.7 σ 3.0 σ 2.9 σ
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Jet Systematics 
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• Jets are difficult to calibrate and Jet Calibration 
systematics can affect jet pT

 

• Jets with pT around the threshold will be affected 
by systematic variations causing bin migration 

• Including the jet systematics to the fit requires reduction to the full 
set of jet systematic uncertainties (up to 17 parameter) without loosing 
correlations 
• Biased fit is performed using fixed fractions to distinguish different 
models
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ggH model (dashed with JES) 
yyf model (dashed with JES)

yyF toy dataset



Summary and outlook
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Jet multiplicities can be used to understand the production 
mechanism of the resonance  

• Njet categories dont increase the discovery significance 
significantly, but allow to distinguish between different 
production modes 
• Still true even with JES uncertainties.

Outlook 
• Started qualification task : E/Gamma Calibration : The pre-
sampler scale 

• Check the stability of the presampler energy scale as function of 
presampler HV changes 
• Determine the presampler scale for 2015-2016 data 

• Analysis : measurement of cross-sections in H(125)-> YY for 
constraints on EFTs
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Thank you for your attention



Backup 
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Categorization
Other jet variables
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nLo=8.9 and nHi =3.3 

Signal Fractions / category : 
• 0j       :  0.17 
• ≥1j    :  0.83

Analysis Overview
Signal Parametrization (SP) - 2jet cat.



14

nLo=8.9 and nHi =3.3 

Signal Fractions / category : 
• 0j    :  0.05 
• 1j    :  0.30 
• 2j    :  0.45 
• ≥3j :  0.20

Analysis Overview
Signal Parametrization (SP) - VBF



Analysis Overview
Statistical Modeling

15

• The p-value test gives the probability 
that result is as or less compatible with the 
background only hypothesis  

• p-value is calculated from profile 
likelihood ratio 

• The Likelihood function per event is defined as follows 
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9. Statistical model1069

9.1. Shape Analysis with Analytical Background Shape1070

The data in the high-mass region are described using a per-event likelihood expressed as1071

L(m��;� f id,mX, ↵X, Nbkg, a, ✓) = NX (� f id,mX, ✓NX , ✓SS) fX (m��, xX (mX, ↵X ), ✓�)
+ Nbkg fbkg (m��, a) (29)

where � f id is again the fiducial production cross-section of the new resonance of mass mX ; the a are the1072

background shape parameters; the ✓NX collectively designates the nuisance parameters used to describe1073

the systematic uncertainties, as listed below:1074

• ✓lumi: uncertainty on the integrated luminosity of the data sample;1075

• ✓e f f ,X , ✓isol,X : systematic uncertainties on photon ID and isolation e�ciencies for the new1076

resonance;1077

• ✓SS: spurious signal systematic;1078

• ✓ES: photon energy resolution systematics;1079

• ✓ER: photon energy scale systematics.1080

• ✓cX : production-mode uncertainty on the CX factor defined below.1081

The quantities NX and Nbkg are the number of events from the new resonance and the non-resonant1082

background components respectively. Nbkg is a free parameter in the fit, while NX is parameterized as1083

NX (� f id,mX, ✓NX , ✓SS) = � f id L CX (mX )
|✓NX |Y

n=1
Ki (✓i) + �SS✓SS (30)

where L is the integrated luminosity of the sample; CX (mX ) the value of the CX factor for the considered1084

mass mX , as described in Section 7.1, KX a function characterizing the e�ect of the normalization system-1085

atics; �SS and ✓SS the value of the background modeling uncertainty and its associated nuisance parameter;1086

✓NX the subset of systematic uncertainties a�ecting NX , ✓NX = {✓e f f ,X, ✓isol,X, ✓lumi, ✓CH, ✓ESS }. The1087

Ki (✓i) factors implement each of the systematic uncertainties on the number of signal events listed above.1088

The expression Ki (✓i) = [1 + �i (mX )]✓i is used, where �i (mX ) is the value of the systematic uncertainty1089

at this mass point, as listed in Table 17. This expression ensures that the modifications to the signal event1090

yield for ✓i = ±1 are exactly equal to the ±1� variations used to define the uncertainties. It is implemented1091

using the RooStats::HistFactory::FlexibleInterpVar class, modified to allow mass-dependent1092

values for the uncertainties.1093

The PDFs fX and fbkg are described as:1094

• Signal: fX (m��, xX (mX, ↵X ), ✓�) is the double-sided Crystal Ball shape described in Section 5. Its1095

parameters xX = {mCB = mX + �m,�CB, ↵low, ↵high, nlow, nhigh} are computed as a function of1096

mX , as explained in the same section. The uncertainty on the CB width is applied by using the expres-1097

sion �CB = �0 K� (✓�), where �0 is the nominal width, and K� (✓�) is defined similarly as for the1098

event yield systematics above, K� (✓�) = [�±(mX )]✓� . The �± are CB widths obtained by applying1099

±1� variations to the mass resolution. The RooStats::HistFactory::FlexibleInterpVar1100
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- NX and Nbkg are the signal and background number of events, fX and fbkg are the signal 
and background Probability density functions 
- θ is nuisance parameters to describe systematic uncertainties  

• An integer index is added to the likelihood to discriminate the different 
categories hence multiplying the number of fit parameters

Analysis Overview
Statistical Modeling
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• The p-value test gives the probability 
that result is as or less compatible with 
the background only hypothesis 
• p-value is calculated from profile 
likelihood ratio 

• The Likelihood function per event is defined as follows 
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Ki (✓i) factors implement each of the systematic uncertainties on the number of signal events listed above.1088

The expression Ki (✓i) = [1 + �i (mX )]✓i is used, where �i (mX ) is the value of the systematic uncertainty1089

at this mass point, as listed in Table 17. This expression ensures that the modifications to the signal event1090

yield for ✓i = ±1 are exactly equal to the ±1� variations used to define the uncertainties. It is implemented1091

using the RooStats::HistFactory::FlexibleInterpVar class, modified to allow mass-dependent1092

values for the uncertainties.1093

The PDFs fX and fbkg are described as:1094

• Signal: fX (m��, xX (mX, ↵X ), ✓�) is the double-sided Crystal Ball shape described in Section 5. Its1095

parameters xX = {mCB = mX + �m,�CB, ↵low, ↵high, nlow, nhigh} are computed as a function of1096

mX , as explained in the same section. The uncertainty on the CB width is applied by using the expres-1097

sion �CB = �0 K� (✓�), where �0 is the nominal width, and K� (✓�) is defined similarly as for the1098

event yield systematics above, K� (✓�) = [�±(mX )]✓� . The �± are CB widths obtained by applying1099

±1� variations to the mass resolution. The RooStats::HistFactory::FlexibleInterpVar1100
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- NX and Nbkg are the signal and background number of events, fX and fbkg are the signal 
and background Probability density functions
- θ is nuisance parameters to describe systematic uncertainties  

• An integer index is added to the likelihood to discriminate the different 
categories hence multiplying the number of fit parameters

more details in backup slides
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Analysis Overview
Statistical modelingN
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Figure 85: Background template uncertainties as discussed in 8.5. The yellow histogram represents the statistical
uncertainty from the limited statistic of the MC sample.

class also implements a smooth interpolation between the use of �� for ✓� < 0 and of �+ for1101

✓� > 0, to ensure non-singular behavior at ✓ = 0.1102

• Continuum background: fbkg(m��; b, a) = (1�x1/3)bxa, a = m�� /
p

s. described by the parameters1103

a and b which are free in the fit.1104

The overall likelihood, including extended and constraint terms, reads:1105

L(� f id,mX, ↵X, Nbkg, a, ✓) =

e�(NX+Nbkg)
fQn

i=1 L(m��i;� f id,mX, ↵X, Nbkg, a, ✓)
g Qdim ✓

k=1 exp
✓
� 1

2

⇣
✓i � ✓aux

i

⌘2◆� (31)

where n is the number of events in the dataset, and ✓aux the set of auxiliary measurements used to constrain1106

the systematic uncertainties.1107

9.2. Shape Analysis with Background Template1108

The background model in the case of graviton analysis is built using the HistFactory [38] package. The1109

uncertainties described in Sec. 8.5 are implemented in the model as three independent nuisance parameters1110

with Gaussian constraints based on the uncertainties in Fig. 85 (HistoSyst in the HistFactory nomen-1111

clature). The e�ect of the limited MC statistic is also included in the model by means of one nuisance1112

parameter per bin of the template (StatError in the HistFactory nomenclature), again associated with1113

a Gaussian constraint based on the uncertainty shown in Fig. 85. To reduce the number of parameters1114

of the fit the bin by bin uncertainties are dropped for masses above 1.5 TeV where their contribution is1115

subdominant.1116

The full model is then built combining the signal PDF described in Sec. 5.3 with the background PDF1117

described above. The statistical treatment (p0 and limits) is performed with the same methodology as1118

used for the scalar analysis but using binned likelihood with 5 GeVbin size.1119

23rd March 2016 – 21:13 88

• The full likelihood is shown below

θaux are set of auxiliary measurement to constrain systematic uncertainties 

• The local significance Zlocal is computed from the asymptotic 
approximation as Z=√q0 

• Expected significance is computed from Asimov dataset which is a 
generated single dataset corresponding to the exact model PDF 
• The analysis was done using HFitter + RooFit packages 
assuming NW and fixed nuisance parameters



              

0-jet 1-jet

2-jet ≥3-jet

Analysis Overview
S+B fit on data
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Categories
Other variables

ggH750 - η1 and η2 distributions

21
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VBFH800 - η1 and η2 distributions
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VBFH800 - pT and pTt distributions 
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0j 1j

2j ≥3j
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Inclusive
• right Comparison between fit 
on data (without signal region) 
and MC (Sherpa yy) normalized 
to nBackground from fit 

• down BG Fit on data (without 
signal region) using full range 
and to 800 GeV

Analysis Overview
Background - Data/MC comparison



Signal BG

         

20 Ntotal: all events in MxAOD

Analysis Overview
Selection effect on Njet cat.



Analysis Overview
Signal Parametrization (SP)
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• Heavy Higgs-like signal : Theoretical line shape (Narrow width of 4 MeV) 
dominated by detector response   

• Modeled for each category with double sided crystal ball function 
(Gaussian core extended by power law tail)
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Figure 10: Description of the double-sided Crystal Ball function parameters, for a signal mass mX = 600 GeV. The
di�erent parameters are described in the text.

5. Signal modeling389

This Section presents in turn the signal modeling strategies adopted by the scalar and graviton analyses.390

5.1. Scalar Signal with Narrow Width391

5.1.1. Definition of the double–sided Crystal Ball function392

Photon energy resolution e�ects lead to a distribution of the reconstructed invariant mass m�� that is both393

non-Gaussian and asymmetric even for a narrow signal. The functional form used to describe it is the394

double-sided Crystal Ball function (DSCB), which consists of a Gaussian core extended by power-law395

tails above and below the peak. It is defined by the expression396

N ·

8>>>>>>>>><>>>>>>>>>:

e�t
2/2 if �↵low  t  ↵high

e
�0.5↵2

low
↵low
nlow

✓
nlow
↵low
�↵low�t

◆�nlow if t < �↵low

e
�0.5↵2

high
↵high
nhigh

✓
nhigh
↵high

�↵high+t
◆�nhigh if t > ↵high,

(4)

where t = (m�� � µCB)/�CB with µCB the peak of the Gaussian distribution and �CB represents the397

width of the Gaussian part of the function; N is a normalization parameter; ↵low (↵high) is the position of398

the junction between the Gaussian and power law on the low (high) mass side in units of t; and nlow (nhigh)399

is the exponent of this power law. The parameter �mX = µCB � mX is defined as the di�erence between400

the peak of the Gaussian and the reference mass value. An illustrative drawing of the double-sided Crystal401

Ball function is provided in Figure 10.402

23rd March 2016 – 21:13 21

No observed change in SP from the 
inclusive case (expected) 
• Signal fraction per category is extracted 



Analysis Overview
Background Modeling
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• The continuous BG can be modeled from MC γγ or using data-driven 
method ranging from [200-2000] GeV 
• The BG function is modeled with  
with all parameters free. 
• A dedicated fit for each category is done 
• Bias from choice of function estimated from spurious signal (SS) test 

• S+B fit on background-only for various mX signal hypothesis

x

�p2(1� x

1/3)p1 ;x = m��/13000
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Loose JVT (0.11)

       

Default JVT (0.64) Moriond 
Recommended value (0.59)

Tight JVT (0.91)

       

       

No much difference 
between loose and 

default JVT cuts

Analysis Overview
Different JVT cuts
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ggH750



Jet NPs examples

25 30

              
Analysis Overview
Nuisance Parameters
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•The full set of jet systematic uncertainties can be up to 17 parameter 
pile up, quark/gluon jet differences, energy calibration corrections  
• Reduction of the number of systematic component is needed to 
include jet systematics in the S+B fit 

• Comparing correlations before and after reduction shows no 
information loss reducing from 17 to 2 systematic component 
(details in backup)

Results

15

• Reduction of Nuisance parameters (NP) is needed to include the 
jet related systematics to the S+B fit

• Achieved by combining the least significant (weakest) nuisance 
parameters into one component while maintaining correlations

• Basis are changed to absolute uncertainty by diagonalizing the 
covariance matrix 

• Reduction of eigenvalues is done iteratively maintaining 
information on correlations 

• comparing correlations before and after the reduction shows no 
information about bin correlations is lost due to reduction 

    from 73 → 17 → 2 NPs

49

13.5 Comparison of the g–jet calibration methods

As discussed in Sect. 10, two different techniques exploiting
the transverse momentum balance in g–jet events are used to
probe the jet response, the direct balance (DB) and the missing
momentum fraction (MPF) method. These methods have dif-
ferent sensitivities to parton radiation, pile-up interactions and
photon background contamination, and hence different system-
atic uncertainties, as explored in Sect. 10.4.

Since the MPF method uses the full hadronic recoil and not
only the jet, a systematic uncertainty due to the possible dif-
ference in data and MC simulation of the calorimeter response
to particles inside and outside of the jet needs to be taken into
account. This systematic uncertainty contribution is estimated
to be small compared to other considered uncertainties. How-
ever, in the absence of a more quantitative estimation, the full
energy of all particles produced outside of the jet as estimated
in the DB technique is taken as the systematic uncertainty. A
comparison between the two results is shown in Fig. 39. The
results are compatible within their uncorrelated uncertainties.

As the methods use similar datasets, the measurements are
highly correlated and cannot easily be included together in the
combination of the in situ techniques. In order to judge which
method results in the most precise calibration, the combination
described in Sect. 13.2 is performed twice, both for Z–jet, g–jet
DB and multijet balance, and separately for Z–jet, g–jet MPF
and multijet balance. The resulting combined calibration that
includes the MPF method has slightly smaller uncertainties, by
up to about 0.1%, and is therefore used as the main result.

13.6 Simplified description of the correlations

For some applications like parameterised likelihood fits it is
preferable to have the JES uncertainties and correlations de-
scribed by a reduced set of uncertainty components. This can
be achieved by combining the least significant (weakest) nui-
sance parameters into one component while maintaining a suf-
ficient accuracy for the JES uncertainty correlations.

The total covariance matrix Ctot of the JES correction fac-
tors can be derived from the individual components of the sta-
tistical and systematic uncertainties:

Ctot =
Nsources

Â
k=1

Ck, (14)

where the sum goes over the covariance matrices of the individ-
ual uncertainty components Ck. Each uncertainty component sk

is treated as fully correlated in pT and the covariance of the pT
bins i and j is given by Ck

i j = sk
i sk

j. All the uncertainty compo-
nents are treated as independent of one another, except for the
photon and electron energy scales which are treated as corre-
lated.16

A reduction of the number of nuisance parameters while re-
taining the information on the correlations can be achieved by
16 A single systematic uncertainty source is assigned to account for

both the photon and electron energy scales by first adding the pho-
ton and electron scales linearly, deriving the full covariance matrix,
and add it linearly to the covariance matrix of the other uncertainty
components.

deriving the total covariance matrix in Eq. (14) and diagonalis-
ing it:

Ctot = ST D S.

Here D is a (positive definite) diagonal matrix, containing the
eigenvalues s2

k of the total covariance matrix, while the S ma-
trix contains on its columns the corresponding (orthogonal)
unitary eigenvectors V k. A new set of independent uncertainty
sources can then be obtained by multiplying each eigenvector
by the corresponding eigenvalue. The covariance matrix can be
re-derived from these uncertainty sources using:

Ctot
i j =

Nbins

Â
k=1

s2
k V k

i V k
j ,

where Nbins is the number of bins used in the combination.
A good approximation of the covariance matrix can be ob-

tained by separating out only a small subset of Neff eigenvec-
tors that have the largest corresponding eigenvalues. From the
remaining Nbins �Neff components, a residual, left-over uncer-
tainty source is determined, with an associated covariance ma-
trix C0. The initial covariance matrix can now be approximated
as:

Ctot
i j ⇡

Neff

Â
k=1

s2
k V k

i V k
j +C0.

This approximation conserves the total uncertainty, while the
precision on the description of the correlations can be directly
determined by comparing the original full correlation matrix
and the approximate one. The last residual uncertainty could in
principle be treated either as correlated or as uncorrelated be-
tween the pT bins. It is observed that treating this uncertainty
source as uncorrelated in pT provides a better approximation
of the correlation matrix. This is expected, as this residual un-
certainty source includes many orthogonal eigenvectors with
small amplitudes and many oscillations, hence the small cor-
relations. The original exact covariance matrix is thus decom-
posed into a part with strong correlations and another one with
much smaller correlations. It is this residual uncertainty source
that incorporates the part with small correlations.

Figure 40 shows the obtained five eigenvectors skV k and
the residual sixth component, as a function of the jet pT. The
pT-dependent sign of these eigenvectors allows to keep track
of the (anti-)correlations of each component in different phase-
space regions. This is necessary for a good description of the
correlations of the total JES uncertainty. These six nuisance
parameters are enough to describe the correlation matrix with
sufficient precision at the level of percent. As explained above,
the quadratic sum of these six components is identical to the
quadratic sum of the original uncertainties shown in Fig. 37.
In the high-pT region above 300 GeV, one eigenvector has a
significantly larger amplitude than all the others, see the black
curve in Fig. 40, hence the strong correlations between the bins.
Approximately 60% to 80% of this component is due to the
photon and electron energy scale uncertainties up to about 700
GeV (see Figs. 37(c) and 37(d)), while some other uncertainties
contribute to it at higher pT.
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13.6 Simplified description of the correlations

For some applications like parameterised likelihood fits it is
preferable to have the JES uncertainties and correlations de-
scribed by a reduced set of uncertainty components. This can
be achieved by combining the least significant (weakest) nui-
sance parameters into one component while maintaining a suf-
ficient accuracy for the JES uncertainty correlations.

The total covariance matrix Ctot of the JES correction fac-
tors can be derived from the individual components of the sta-
tistical and systematic uncertainties:
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where the sum goes over the covariance matrices of the individ-
ual uncertainty components Ck. Each uncertainty component sk

is treated as fully correlated in pT and the covariance of the pT
bins i and j is given by Ck
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j. All the uncertainty compo-
nents are treated as independent of one another, except for the
photon and electron energy scales which are treated as corre-
lated.16

A reduction of the number of nuisance parameters while re-
taining the information on the correlations can be achieved by
16 A single systematic uncertainty source is assigned to account for

both the photon and electron energy scales by first adding the pho-
ton and electron scales linearly, deriving the full covariance matrix,
and add it linearly to the covariance matrix of the other uncertainty
components.

deriving the total covariance matrix in Eq. (14) and diagonalis-
ing it:

Ctot = ST D S.

Here D is a (positive definite) diagonal matrix, containing the
eigenvalues s2

k of the total covariance matrix, while the S ma-
trix contains on its columns the corresponding (orthogonal)
unitary eigenvectors V k. A new set of independent uncertainty
sources can then be obtained by multiplying each eigenvector
by the corresponding eigenvalue. The covariance matrix can be
re-derived from these uncertainty sources using:
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where Nbins is the number of bins used in the combination.
A good approximation of the covariance matrix can be ob-

tained by separating out only a small subset of Neff eigenvec-
tors that have the largest corresponding eigenvalues. From the
remaining Nbins �Neff components, a residual, left-over uncer-
tainty source is determined, with an associated covariance ma-
trix C0. The initial covariance matrix can now be approximated
as:
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This approximation conserves the total uncertainty, while the
precision on the description of the correlations can be directly
determined by comparing the original full correlation matrix
and the approximate one. The last residual uncertainty could in
principle be treated either as correlated or as uncorrelated be-
tween the pT bins. It is observed that treating this uncertainty
source as uncorrelated in pT provides a better approximation
of the correlation matrix. This is expected, as this residual un-
certainty source includes many orthogonal eigenvectors with
small amplitudes and many oscillations, hence the small cor-
relations. The original exact covariance matrix is thus decom-
posed into a part with strong correlations and another one with
much smaller correlations. It is this residual uncertainty source
that incorporates the part with small correlations.

Figure 40 shows the obtained five eigenvectors skV k and
the residual sixth component, as a function of the jet pT. The
pT-dependent sign of these eigenvectors allows to keep track
of the (anti-)correlations of each component in different phase-
space regions. This is necessary for a good description of the
correlations of the total JES uncertainty. These six nuisance
parameters are enough to describe the correlation matrix with
sufficient precision at the level of percent. As explained above,
the quadratic sum of these six components is identical to the
quadratic sum of the original uncertainties shown in Fig. 37.
In the high-pT region above 300 GeV, one eigenvector has a
significantly larger amplitude than all the others, see the black
curve in Fig. 40, hence the strong correlations between the bins.
Approximately 60% to 80% of this component is due to the
photon and electron energy scale uncertainties up to about 700
GeV (see Figs. 37(c) and 37(d)), while some other uncertainties
contribute to it at higher pT.
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certainty source includes many orthogonal eigenvectors with
small amplitudes and many oscillations, hence the small cor-
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energy of all particles produced outside of the jet as estimated
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comparison between the two results is shown in Fig. 39. The
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trix C0. The initial covariance matrix can now be approximated
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This approximation conserves the total uncertainty, while the
precision on the description of the correlations can be directly
determined by comparing the original full correlation matrix
and the approximate one. The last residual uncertainty could in
principle be treated either as correlated or as uncorrelated be-
tween the pT bins. It is observed that treating this uncertainty
source as uncorrelated in pT provides a better approximation
of the correlation matrix. This is expected, as this residual un-
certainty source includes many orthogonal eigenvectors with
small amplitudes and many oscillations, hence the small cor-
relations. The original exact covariance matrix is thus decom-
posed into a part with strong correlations and another one with
much smaller correlations. It is this residual uncertainty source
that incorporates the part with small correlations.

Figure 40 shows the obtained five eigenvectors skV k and
the residual sixth component, as a function of the jet pT. The
pT-dependent sign of these eigenvectors allows to keep track
of the (anti-)correlations of each component in different phase-
space regions. This is necessary for a good description of the
correlations of the total JES uncertainty. These six nuisance
parameters are enough to describe the correlation matrix with
sufficient precision at the level of percent. As explained above,
the quadratic sum of these six components is identical to the
quadratic sum of the original uncertainties shown in Fig. 37.
In the high-pT region above 300 GeV, one eigenvector has a
significantly larger amplitude than all the others, see the black
curve in Fig. 40, hence the strong correlations between the bins.
Approximately 60% to 80% of this component is due to the
photon and electron energy scale uncertainties up to about 700
GeV (see Figs. 37(c) and 37(d)), while some other uncertainties
contribute to it at higher pT.
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principle be treated either as correlated or as uncorrelated be-
tween the pT bins. It is observed that treating this uncertainty
source as uncorrelated in pT provides a better approximation
of the correlation matrix. This is expected, as this residual un-
certainty source includes many orthogonal eigenvectors with
small amplitudes and many oscillations, hence the small cor-
relations. The original exact covariance matrix is thus decom-
posed into a part with strong correlations and another one with
much smaller correlations. It is this residual uncertainty source
that incorporates the part with small correlations.

Figure 40 shows the obtained five eigenvectors skV k and
the residual sixth component, as a function of the jet pT. The
pT-dependent sign of these eigenvectors allows to keep track
of the (anti-)correlations of each component in different phase-
space regions. This is necessary for a good description of the
correlations of the total JES uncertainty. These six nuisance
parameters are enough to describe the correlation matrix with
sufficient precision at the level of percent. As explained above,
the quadratic sum of these six components is identical to the
quadratic sum of the original uncertainties shown in Fig. 37.
In the high-pT region above 300 GeV, one eigenvector has a
significantly larger amplitude than all the others, see the black
curve in Fig. 40, hence the strong correlations between the bins.
Approximately 60% to 80% of this component is due to the
photon and electron energy scale uncertainties up to about 700
GeV (see Figs. 37(c) and 37(d)), while some other uncertainties
contribute to it at higher pT.

Results
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• Reduction of Nuisance parameters (NP) is needed to include the 
jet related systematics to the S+B fit

• Achieved by combining the least significant (weakest) nuisance 
parameters into one component while maintaining correlations

• Basis are changed to absolute uncertainty by diagonalizing the 
covariance matrix 

• Reduction of eigenvalues is done iteratively maintaining 
information on correlations 

• comparing correlations before and after the reduction shows no 
information about bin correlations is lost due to reduction 

    from 73 → 17 → 2 NPs
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13.5 Comparison of the g–jet calibration methods

As discussed in Sect. 10, two different techniques exploiting
the transverse momentum balance in g–jet events are used to
probe the jet response, the direct balance (DB) and the missing
momentum fraction (MPF) method. These methods have dif-
ferent sensitivities to parton radiation, pile-up interactions and
photon background contamination, and hence different system-
atic uncertainties, as explored in Sect. 10.4.

Since the MPF method uses the full hadronic recoil and not
only the jet, a systematic uncertainty due to the possible dif-
ference in data and MC simulation of the calorimeter response
to particles inside and outside of the jet needs to be taken into
account. This systematic uncertainty contribution is estimated
to be small compared to other considered uncertainties. How-
ever, in the absence of a more quantitative estimation, the full
energy of all particles produced outside of the jet as estimated
in the DB technique is taken as the systematic uncertainty. A
comparison between the two results is shown in Fig. 39. The
results are compatible within their uncorrelated uncertainties.

As the methods use similar datasets, the measurements are
highly correlated and cannot easily be included together in the
combination of the in situ techniques. In order to judge which
method results in the most precise calibration, the combination
described in Sect. 13.2 is performed twice, both for Z–jet, g–jet
DB and multijet balance, and separately for Z–jet, g–jet MPF
and multijet balance. The resulting combined calibration that
includes the MPF method has slightly smaller uncertainties, by
up to about 0.1%, and is therefore used as the main result.

13.6 Simplified description of the correlations

For some applications like parameterised likelihood fits it is
preferable to have the JES uncertainties and correlations de-
scribed by a reduced set of uncertainty components. This can
be achieved by combining the least significant (weakest) nui-
sance parameters into one component while maintaining a suf-
ficient accuracy for the JES uncertainty correlations.

The total covariance matrix Ctot of the JES correction fac-
tors can be derived from the individual components of the sta-
tistical and systematic uncertainties:

Ctot =
Nsources

Â
k=1

Ck, (14)

where the sum goes over the covariance matrices of the individ-
ual uncertainty components Ck. Each uncertainty component sk

is treated as fully correlated in pT and the covariance of the pT
bins i and j is given by Ck

i j = sk
i sk

j. All the uncertainty compo-
nents are treated as independent of one another, except for the
photon and electron energy scales which are treated as corre-
lated.16

A reduction of the number of nuisance parameters while re-
taining the information on the correlations can be achieved by
16 A single systematic uncertainty source is assigned to account for

both the photon and electron energy scales by first adding the pho-
ton and electron scales linearly, deriving the full covariance matrix,
and add it linearly to the covariance matrix of the other uncertainty
components.

deriving the total covariance matrix in Eq. (14) and diagonalis-
ing it:

Ctot = ST D S.

Here D is a (positive definite) diagonal matrix, containing the
eigenvalues s2

k of the total covariance matrix, while the S ma-
trix contains on its columns the corresponding (orthogonal)
unitary eigenvectors V k. A new set of independent uncertainty
sources can then be obtained by multiplying each eigenvector
by the corresponding eigenvalue. The covariance matrix can be
re-derived from these uncertainty sources using:

Ctot
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where Nbins is the number of bins used in the combination.
A good approximation of the covariance matrix can be ob-

tained by separating out only a small subset of Neff eigenvec-
tors that have the largest corresponding eigenvalues. From the
remaining Nbins �Neff components, a residual, left-over uncer-
tainty source is determined, with an associated covariance ma-
trix C0. The initial covariance matrix can now be approximated
as:

Ctot
i j ⇡

Neff

Â
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s2
k V k

i V k
j +C0.

This approximation conserves the total uncertainty, while the
precision on the description of the correlations can be directly
determined by comparing the original full correlation matrix
and the approximate one. The last residual uncertainty could in
principle be treated either as correlated or as uncorrelated be-
tween the pT bins. It is observed that treating this uncertainty
source as uncorrelated in pT provides a better approximation
of the correlation matrix. This is expected, as this residual un-
certainty source includes many orthogonal eigenvectors with
small amplitudes and many oscillations, hence the small cor-
relations. The original exact covariance matrix is thus decom-
posed into a part with strong correlations and another one with
much smaller correlations. It is this residual uncertainty source
that incorporates the part with small correlations.

Figure 40 shows the obtained five eigenvectors skV k and
the residual sixth component, as a function of the jet pT. The
pT-dependent sign of these eigenvectors allows to keep track
of the (anti-)correlations of each component in different phase-
space regions. This is necessary for a good description of the
correlations of the total JES uncertainty. These six nuisance
parameters are enough to describe the correlation matrix with
sufficient precision at the level of percent. As explained above,
the quadratic sum of these six components is identical to the
quadratic sum of the original uncertainties shown in Fig. 37.
In the high-pT region above 300 GeV, one eigenvector has a
significantly larger amplitude than all the others, see the black
curve in Fig. 40, hence the strong correlations between the bins.
Approximately 60% to 80% of this component is due to the
photon and electron energy scale uncertainties up to about 700
GeV (see Figs. 37(c) and 37(d)), while some other uncertainties
contribute to it at higher pT.
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Results

0-jet 1-jet 2-jet ≥ 3 jet combined inclusive

ggH 
BG (MC) 

0.93 σ 1.69 σ 1.55 σ 1.37 σ
2.80 σ 2.77 σ

fSignal = 0.17 fSignal = 0.34 fSignal = 0.26 fSignal = 0.21

ggH 
BG (S+B fit on data)  

0.99 σ 1.78 σ 1.52 σ 1.27 σ
2.83 σ 2.82 σ

fSignal = 0.17 fSignal = 0.34 fSignal = 0.26 fSignal = 0.21

ggH 
BG (MC) 

0.93 σ 2.67 σ
2.73 σ 2.77 σ

fSignal = 0.17 fSignal = 0.83

ggH 
BG (S+B fit on data)  

1.00 σ 2.67 σ
2.85 σ 2.82 σ

fSignal = 0.17 fSignal = 0.83

VBF 
BG (MC) 

0.31 σ 1.57 σ 2.28 σ 1.20 σ
3.03 σ 2.77 σ

fSignal = 0.05 fSignal = 0.30 fSignal = 0.45 fSignal = 0.20

VBF 
BG (MC) 

0.29 σ 2.92 σ 2.94 σ 2.77 σ
fSignal = 0.05 fSignal = 0.95

0-jet 1-jet 2-jet ≥ 3 jet combined inclusive

Ɣ Ɣ fusion
2.31 σ 1.45 σ 0.92 σ 0.53 σ 2.92 σ 2.77 σ

fSignal = 0.50 fSignal = 0.29 fSignal = 0.14 fSignal = 0.07

qq fusion
1.22 σ 1.60 σ 1.44 σ 1.37 σ 2.81 σ 2.77 σ

fSignal = 0.23 fSignal = 0.32 fSignal = 0.24 fSignal = 0.21

EFT 1.19 σ 1.65 σ 1.42 σ 1.19 σ 2.73 σ 2.77 σ
fSignal = 0.24 fSignal = 0.34 fSignal = 0.24 fSignal = 0.18
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