

Photon ID Efficiency measurement with radiative Z boson decays using ATLAS data

4th October 2016, Pisa

Ilaria LUISE

Supervisors: G. BERNARDI G. MARCHIORI

Introduction

Photons @ LHC are important signatures in many analyses:

- Higgs Boson Physics ($H \rightarrow \gamma \gamma$, 2012)
- BSM: SUSY or extra dimension models

How photons are detected @ LHC?

Reconstruction \rightarrow Select possible γ candidates Identification \rightarrow Reject Background (from jets)

Possible $H \rightarrow \gamma \gamma$ event

Photon Identification in ATLAS:

Background rejection using cut-based selection on 9 *discriminating variables* based on energy in cells of ECAL and leakage in HCAL.

--- **Overlap** = ID Algorithm not 100% efficient

We need a *pure* control sample of γ to **test the efficiency** of this algorithm

The Radiative Z method

Use photons from $Z \rightarrow II\gamma$ decays

14.8 fb⁻¹ 13 TeV ATLAS data

•Procedure:

•Select pure sample of $Z \rightarrow II\gamma$ (e, μ) events (before applying tight ID cut to γ)

•Selection based **ONLY on kinematic cuts**, no cuts on the discriminating variables (invariant mass of the system: mll $\gamma \sim 90$ GeV with mll < 90 GeV)

 Count the fraction of selected events in which the *photon* passes the **ID** requirements

•Selection:

- •2 opposite charge leptons (e or μ)
- •1 photon with pT > 10 GeV

•Ily invariant mass in [80,100] GeV

•Il invariant mass in [50, 83] GeV

133k events selected

100k *unconverted* photons 33k converted photons

Photon ID Efficiency Data vs Simulation

Scale Factors (SFs): DATA/MC ratios of the efficiencies

multiply MC to get the scaled efficiency consistent with the efficiency in data \rightarrow SFs are used to correct all the ATLAS photon based analyses

How to extract SFs?

compare Data and Simulated $\ell\ell\gamma$ (ONLY PURE SIGNAL EFFICIENCY, No Jets in the MC)

Background Subtraction

- Maximum Likelihood fit to the muy distribution in data *after* applying all the other selection criteria
- Estimate Signal and Background yeld for each bin of p_T and eta:
 Signal distribution: from Sherpa or Powheg MC simulation of Z→IIγ
 Bkg distribution: from Sherpa or Powheg MC simulation of Z+jet
- **Correct the efficiency:** using the estimated signal yeld before and after tight photon identification criteria

Photon ID Efficiency after Bkg subtraction

Bkg subtraction only in the first three E_T bins: 10-15 GeV, 15-20 GeV and 20-25 GeV

Better Data/MC agreement @ low E_T \rightarrow scale factor for first E_T bin compatible with 1.

... Study of possible systematics (i.e. pile-up and isolation)

Conclusions

- Measurement of Photon ID Efficiency performed on ATLAS data:
 - using **14.8 fb**⁻¹ Run2 data: 3.2 from 2015 + 11.6 from 2016
 - with Radiative Z method, using $Z \rightarrow \mu\mu\gamma$ and $Z \rightarrow ee\gamma$ channels combined.
- Improvement of DATA/MC agreement @ low pT using template based
 Bkg subtraction on data
- Contribution to the measurement of the scale factors Data/MC for the ATLAS analyses
- Study of possible sources of systematic uncertainties on SFs (not shown):
 - Isolation pre-selection
 - Pile-up

Backup Slides

Photons Identification

Many sources of **Background**:

• **neutral meson decays** inside hadronic jets \rightarrow huge xsection

Background rejection using cut-based selection on **9** discriminating variables based on energy in cells of layers 1, 2 of ECAL and leakage in HCAL

 π^{υ} candidate

• *tight photon-id:* ε~85% for E⊤>20 GeV, R_{jet}~5000 ;

Photon Isolation

Isolation: measure the activity around the photon in ECAL and tracker. Reduce neutral meson Bkg.

Calorimeter isolation:

- sum of ET of clusters in cone ΔR = √Δη² + Δφ² < 4, excluding a rectangle (0.125x0.175) around photon
- larger ΔR = better S/B separation, larger sensitivity to pileup

Track isolation:

- number or sum of pT of tracks in cone of radius ΔR (<0.2, 0.3)
- pileup robust (only tracks from Primary Verteces)
- less discriminating (only charged particles i.e. conv γ)
- loose iso: 99% calo iso ; 99% track iso ; 99% combined iso
- tight iso: 96% calo iso ; 99% track iso ; 95% combined iso

 π^0 in jet