
Introduction au domaine d'Astroparticules

Agnieszka Jacholkowska

Biennale, LPNHE, Tirrenia 06/10/2016

Plan

Introduction – Rayons Cosmiques (CRs)

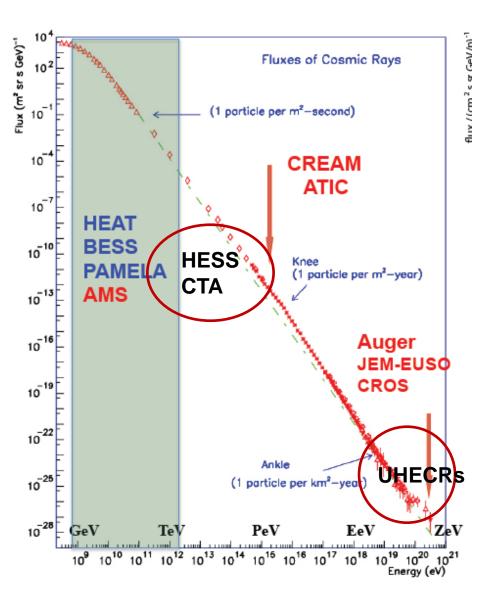
- 1. Rayons Cosmiques de Très Hautes Energies UHECRs
- 2. Brisure de Invariance de Lorentz (LIV) et Gravité Quantique (QG)
- 3. Recherches Indirectes de la Matière Noire DM

Conclusions

Domaine d'Astroparticules

1. Multidisciplinaire

Astrophysique – Physique des Particules – Cosmologie Astrophysique: compréhension des processus de production et propagation des Rayons Cosmiques (CRs) Physique des Particules: Modèle Standard (SM) + Extensions fournit candidats aux particules et interactions Cosmologie: paramètres cosmologiques (ΛCDM)

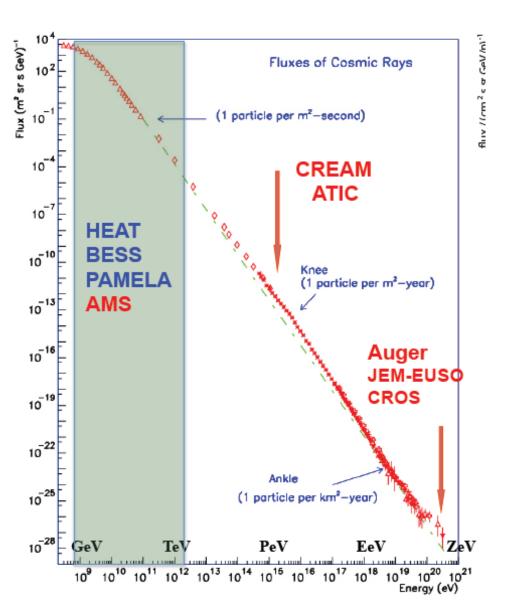

2. Multi-messager: confirmation des résultats dans différents canaux fort impact sur les modèles

3. Multi-longueur d'onde

Synergie avec observations astrophysiques à basses fréquences Radio, Optique, Rayon-X

→ Domaine Fédérateur de différentes disciplines

Rayons Cosmiques


Impressionnant:

Spectre en énergie couvre 12 décades :MeV – ZeV

Question Fondamentale: Origine (depuis > 50 ans)

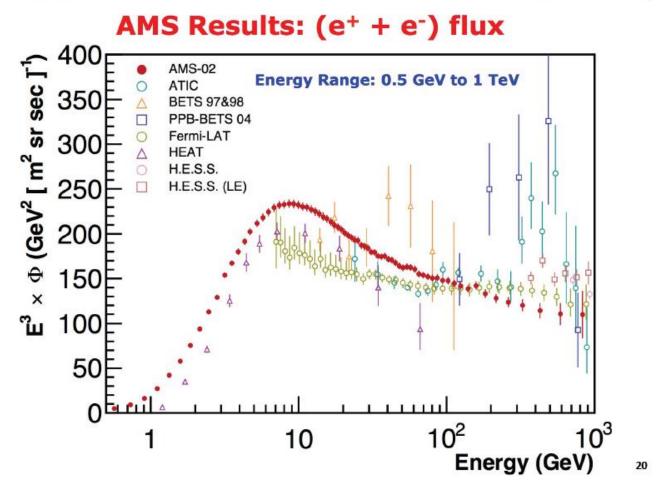
Sources - (extra) galactiques Processus – standards ou exotiques ?

Mesures avec CRs

Mesures primaires:

Temps d'arrivée - T Energie - E Direction – θ (angle d'émission) Composition – nature p, ions, e-, γ, ν + antimatière

Flux & Courbes de Lumière (LC) reconstruit en variables à la source Nécessite hypothèses et modélisation MC


 → entités physique évoluées ex. LIV: échelle de QG
 <σν>:section efficace d'annihilation de DM

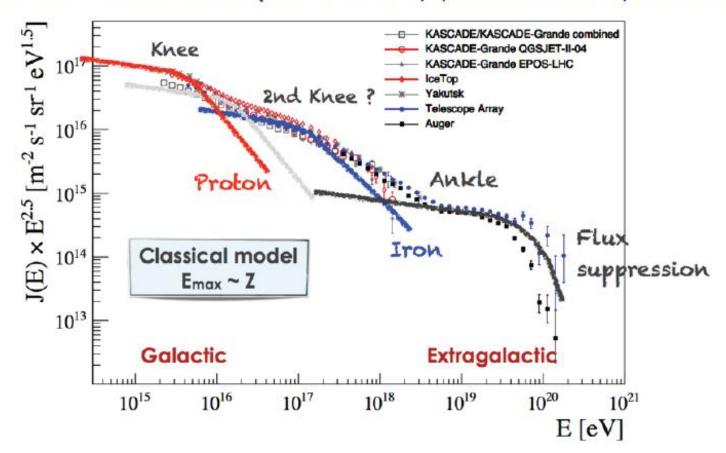
Spectre en énergie des e⁺ + e⁻

PRL 113, 221102 (2014)

PHYSICAL REVIEW LETTERS

week ending 28 NOVEMBER 2014

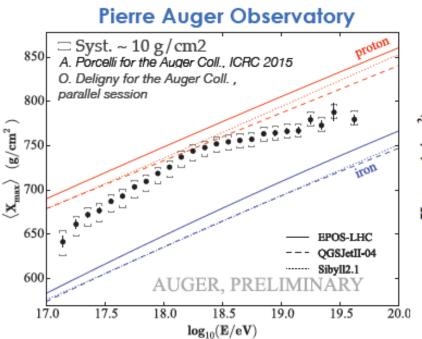
H.E.S.S.: nouveaux résultats en attente – voir thèse de D. Kerszberg


Études avec UHECRs

UHECRs: "state of art"

M. Settimo, ICHEP 2016

8


The classical model (not the only possible interpretation)

→ mesures précises permettant de interprétations complexes

UHECRs: composition en masse

M. Settimo, ICHEP 2016

Telescope Array 900 Data (Jan/2008-Dec/2014) QGSJetII-03 19 g/cm² sys. uncert. QGSJet01 850 SIBYLL 2.1 Proton QGSJetII-04 <Xmax> (g/cm²) 800 EPOS-LHC 750 700 Iron 650 J. Beltz for the TA Coll., ICRC 2015 C. Jui for the TA Coll., parallel session 18.5 18 19 19.5 20 $\log_{10}(\mathbf{E} \ (eV))$

Change in composition and break point at E ~10^{18.3} eV

Proton dominant composition

→ future: combiner résultats AUGER et Telescope Array

UHECRs: anisotropie E > 5.5 EeV

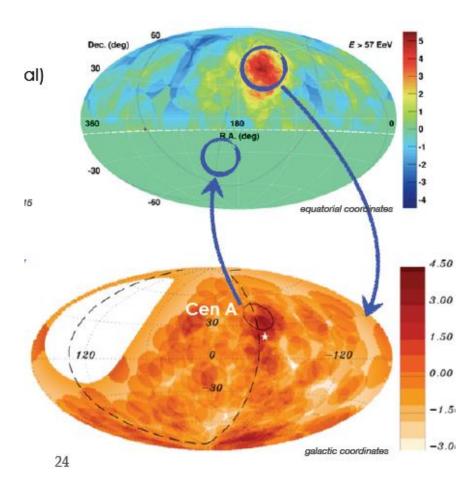
M. Settimo, ICHEP 2016

Telescope Array

Max significance: 5.1σ (pre-trial)

post-trial: 3.4 σ

 $E_{thr} > 57 \text{ EeV}, \psi = 20^{\circ}$


$$(N_{obs} = 24, N_{bg} = 6.88)$$

K.Kawata for the Telescope Array Collab., ICRC 2015

Pierre Auger Observatory

Largest excess: pre-trial 4.3 σ, 69% post-trial probability)

$$E_{thr} > 54 \text{ EeV}, \psi = 12^{\circ},$$

 $N_{obs} = 14 / N_{ba} = 3.23$

→ discussions concernant traitement statistique

UHECRs – perspectives

UHECRs fournissent résultats aux énergies extrêmes >> E_{LHC}

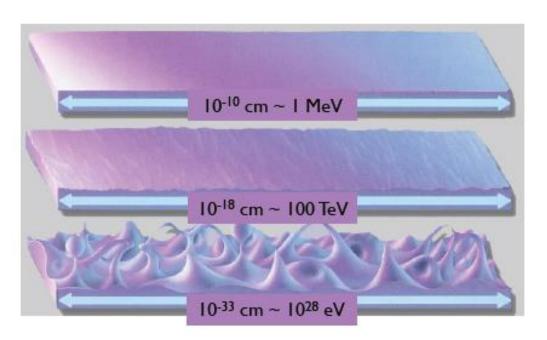
Plusieurs nouveaux résultats avec précision croissante parfois contradictoires

→ "upgrades" des expérience (ex. AUGER-muons)

Questions ouvertes:

- transition Galactique- Extra-galactique
- origine de la cheville
- composition aux énergies intermédiaires
- sources: besoin d'études multi-messagers corrélations avec émission gamma
- modélisations ...

Physique Fondamentale avec Rayons-y

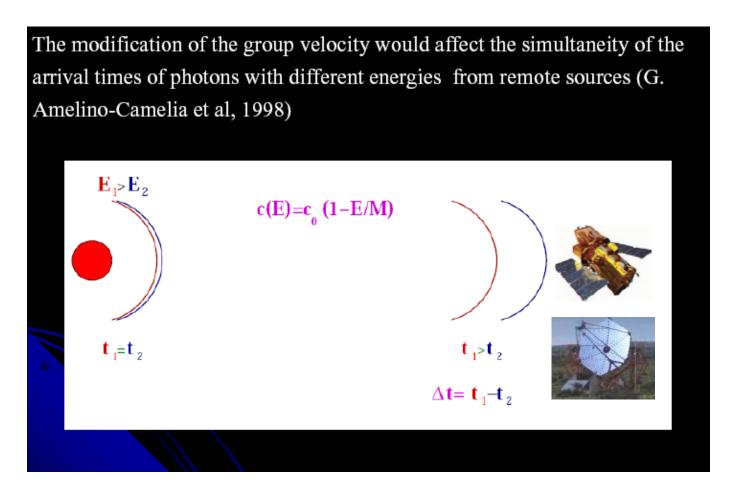

Gravité Quantique – Théorie globale ?

Objectif: réunir Mécanique Quantique et Relativité Générale

- → Three roads to Quantum Gravity (Lee Smolin, 2000):
 - In **Loop Quantum Gravity** scheme (e.g. Gambini, Pullin 1999, Alfaro et al., 2002)
 - In extra-dimension **String Theories**Liouville strings, <u>space-time foam</u>, non-comutative geometry, ...

 (e.g. J. Ellis, N. E. Mavromatos, D. V. Nanopoulos 1999,
 L.J. Garay 1998, G. Amelino-Camelia 2001)
 - Black Hole thermodynamics physics at Planck scale (e.g. Hawking, Penrose, 2000)

Tests de l'Invariance de Lorentz


Structure Quantique
de l'espace-temps peut produire
dépendance de la vitesse c
de la lumière dans vide
avec énergie du photon

$$v = c \left(1 \pm \xi \left(\frac{E}{M_{\rm p}} \right) \pm \zeta \left(\frac{E}{M_{\rm p}} \right)^2 \pm \dots \right)$$

Accès à l'énergie de Planck M_P

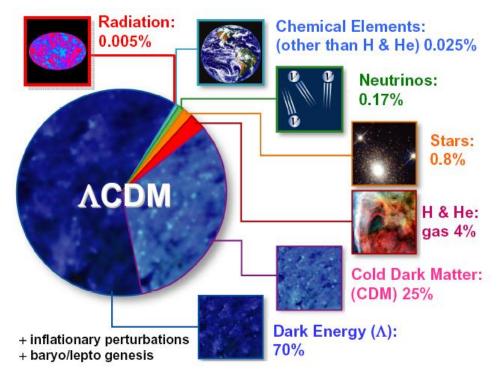
- avec larges distance et très hautes énergies
- via études des événements rapides : GRBs, AGNs (flare), Pulsars
- résultats dépendants du type d'événement

Tests LIV avec sources astrophysiques

Amelino-Camelia, Ellis, Mavromatos, Nanopoulos, Sarkar, Nature (1996) G. Amelino-Camelia, Perspectives on QG (2003)

LIV & QG – résultats

Source	Experiment	Method	Results linear, quadratic (GeV)
Mrk 421	Whipple	Likelihood	$E_{QG} > 0.6x10^{17}$
Mrk 501	MAGIC	ECF + Likelihood	$E_{QG} > 0.3x10^{18}, > 0.3 \cdot 10^{11}$
PKS 2155-304	H.E.S.S.	MCCF + Wavelets + Likelihood	$E_{QG} > 2.1 \times 10^{18}, > 0.5 \cdot 10^{11}$
GRB 021206	RHESSI	Fit + Mean arrival time in a spike	E _{QG} > 1.5x10 ¹⁷
GRB 080916C	Fermi GBM + LAT	$\Delta t = t(Photon with highest E) - t_0$	E _{QG} > 1.5x10 ¹⁸
GRB 090510	Fermi GBM + LAT	CCF, cost function/Shannon	$E_{QG} > 1.2 \times 10^{19}, > 0.5 \cdot 10^{11}$
9 GRBs	BATSE + OSSE	Wavelets	$E_{QG} > 0.6 \times 10^{16}$
15 GRBs	HETE-2	Wavelets	$E_{QG} > 0.4 \times 10^{16}$
17 GRBs	INTEGRAL	Likelihood	$E_{QG} > 0.4 \times 10^{11}$
35 GRBs	BATSE + HETE-2 + SWIFT	Wavelets	E _{QG} > 1.4x10 ¹⁶
CRAB pulsar	VERITAS	Mesure directe ΔΦ/Δt	$E_{QG} > 3.0 \times 10^{17}$


LIV & QG – perspectives

Etudes Futures:

Objectif – recherche des effets LIV globale

- Une collaboration H.E.S.S+MAGIC+VERITAS s'est constituée;
 - améliorer la sensibilité
 - étudier dépendance en Redshift → évaluer mieux systématiques
 - inclure les 3 types des sources
- En préparation des analyses avec CTA
 - fournir le statut final des résultats LIV obtenue en Astronomie-y
 - faire prédictions pour CTA:
 - → avec observation de nombreux « flares » des AGNs détection d'émission pulsée des Pulsars et détection possible des GRBs

Matière Noire - Cosmologie

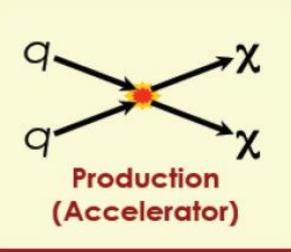
Simulations à n-corps de formation des structures favorisent <u>paradigme</u> de Matière Noire Froide (CDM) composée des particules Massives interagissant faiblement: WIMPs

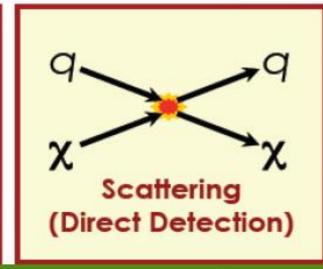
Gamme des masses: 10^{-6} eV $(10^{-40}\text{g}) - 10^{-8}$ M_{sol} (10^{25}g)

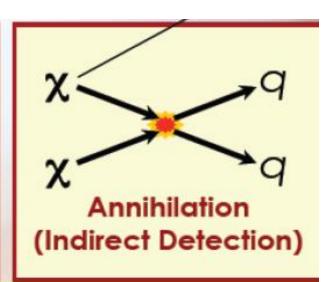
Candidats: Neutrinos - HOT

Sterile neutrinos, gravitinos - WARM

LSP (lightest SUSY particle - neutralino, axino, ...) - COLD

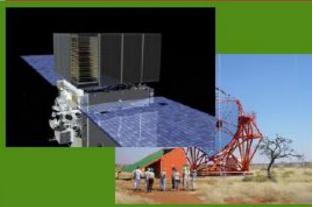

LKP (lightest Kaluza-Klein particle) - COLD


Axions, axion clusters - COLD

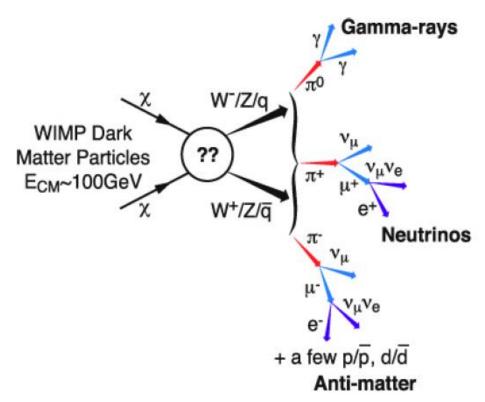

Solitons (Q-balls, B-balls, Odd-balls, ...) - COLD

Supermassive Wimpzillas - COLD

Détection de la Matière Noire



Large Hadron Collider


Deep underground detectors (e.g based on Xenon)

Gamma ray telescopes, neutrino telescopes, Charged cosmic ray detectors

06/10/2016 A. Jacholkowska

10

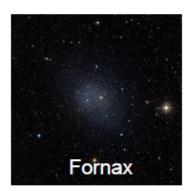
Détection Indirecte: annihilations des WIMPs

Dernières 15 années:

Grandes expériences spatiales – PAMELA, *Fermi-*LAT, AMS, ... Au sol – **H.E.S.S.**, MAGIC, VERITAS, IceCube, **CTA**, km3

Annihilations des WIMPs en rayons y

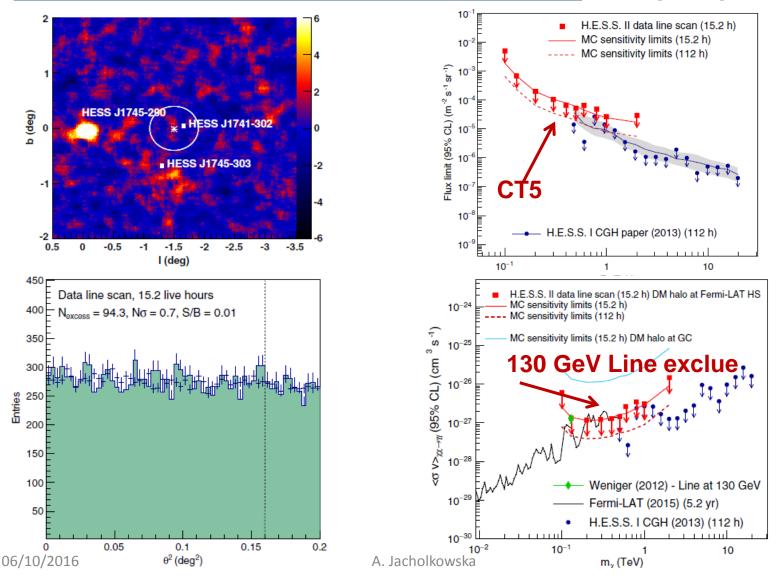
Halo au Centre Galactique:


Avantages – grande densité, proche Inconvénients - incertitude sur la forme du halo bruit de fond astrophysique

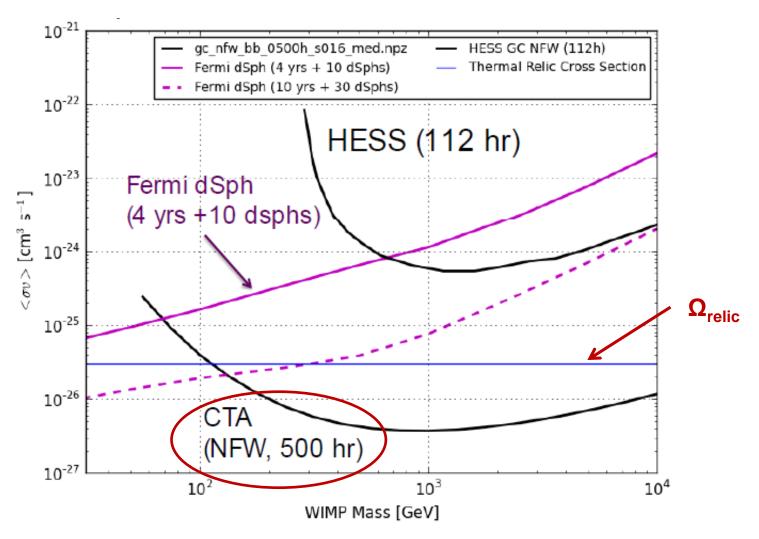
→ la meilleure source

Les Galaxies Naines Sphéroïdales:

Avantages – pas de bruit astrophysique nombreuses halo DM mieux connu Inconvénients - densité du halo moindre (~10⁻²) → bonnes candidates car si signal découvert: DM!

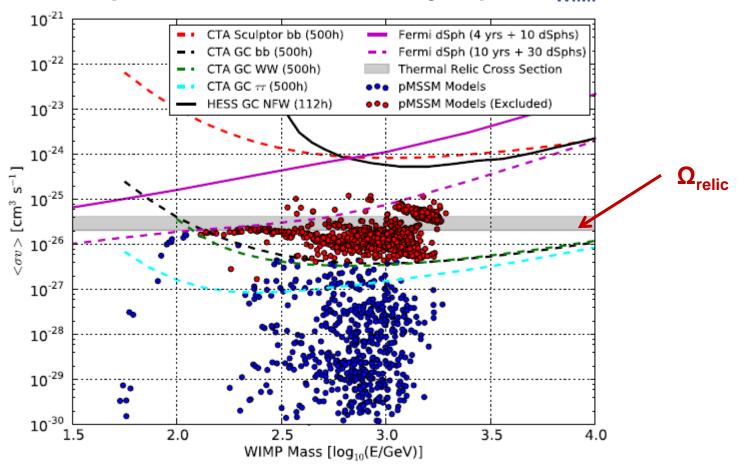

Amas des Galaxies

Très massifs mais lointains à la portée de CTA car seuil en énergie bas et excellente sensibilité au signal y (voir présentation J. Bolmont)

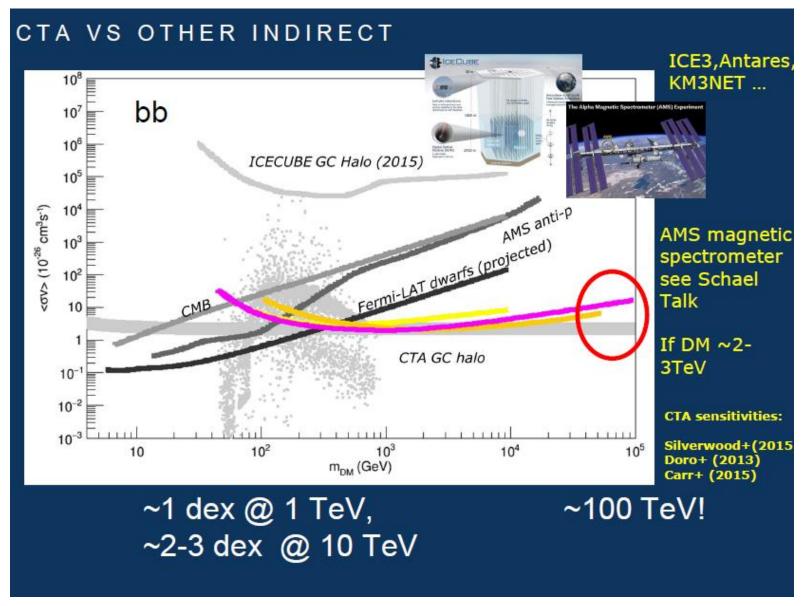


Annihilations des WIMPs en y monochromatiques

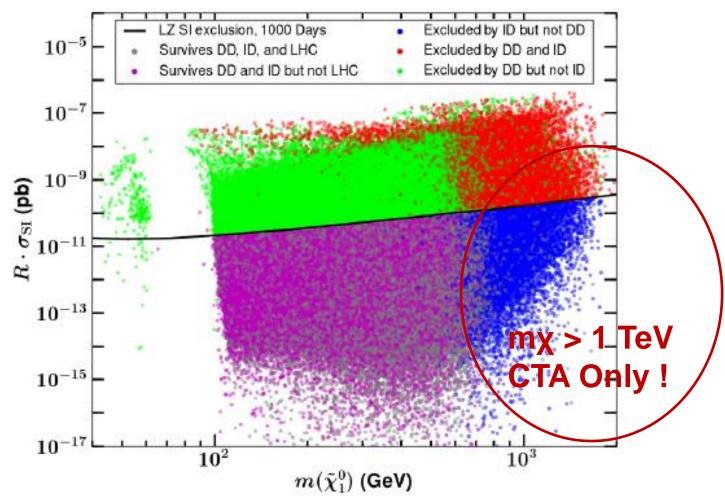
1ère publication de H.E.S.S. avec 5e télescope: acceptée par PRL


Sensitivité: annihilations des WIMPs en rayons y

See also latest H.E.S.S. (254 hr): 1607.08142


Limites sur < \sigma v > annihilation de CTA

→ CTA testera plusieurs Modèles SUSY jusqu'à m_{WIMP} ~ multi-TeV

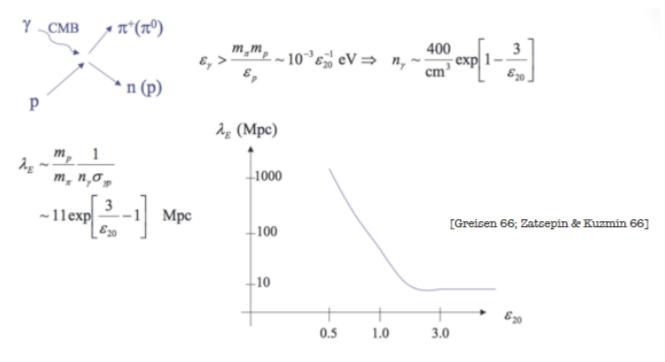

M. Wood et al. Snowmass 1305.0302

CTA limites vs autres recherches Indirectes

Complémentarité recherches Indirectes – Directes - LHC

Cahill-Rowley et al. PRD 91, 055011 (2015)

Conclusions

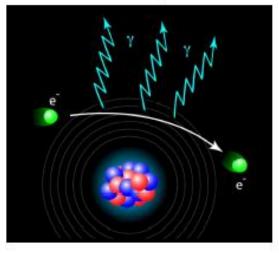

Astroparticules: domaine riche et complexe

- UHECRs bonnes perspectives pour résoudre les énigmes
- LIV & QG échelle de Planck avec modèles en Ey² (plus génériques)
- DM toujours en quête des réponses sur sa nature pour avancer:
 - → besoin de développer études multi-messager cohérence ?
 - → faire des études de complémentarité/redondance confirmation de signal DM cosmologique

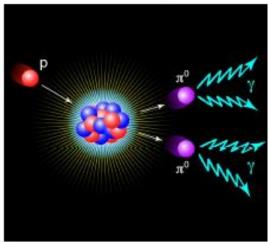
Back-up

UHECRs

The GZK Paradigm

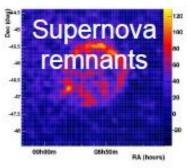

- Rapid reduction of the horizon ⇒ Flux suppression at UHE
- Anisotropy of extragalactic local matter + small magnetic deflection for 10²⁰ eV protons ⇒ possibility of UHECR astronomy

Production of γ-rays: basic processes


Diffusion Compton inverse

e My

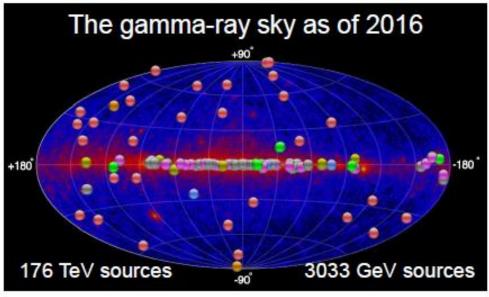
Rayonnement de freinage


Processus hadroniques

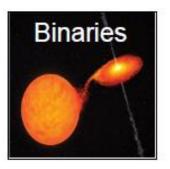
propagation en ligne « droite »

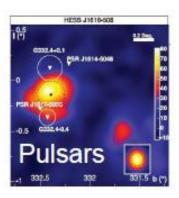
- exploration de l'Univers non-thermique
- origine et propagation des rayons cosmiques

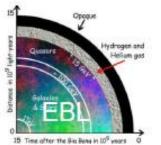

Physique avec rayons-y au TeV

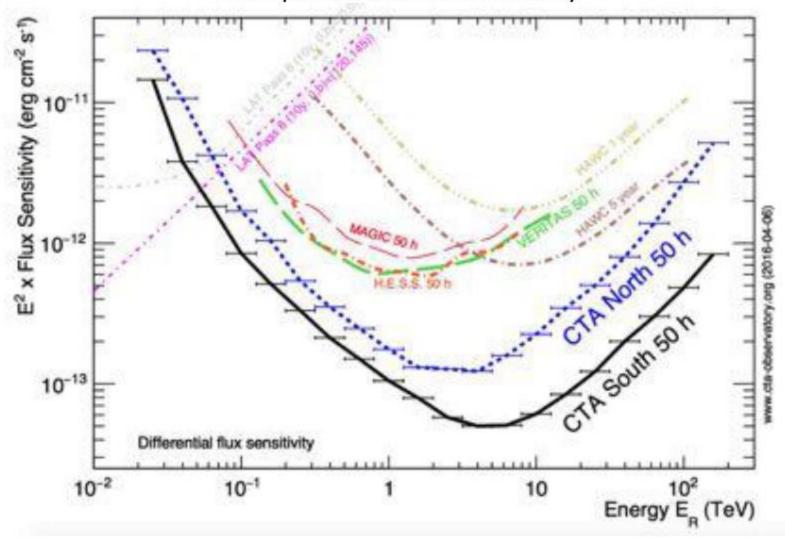












CTA point source sensitivity

ICHEP 2016

Justin Vandenbroucke: CTA

13

06/10/2016 A. Jacholkowska

Lorentz Symmetry and Quantum Gravity

- Strong theoretical and experimental interest in possible high energy violation of local Lorentz Invariance (LI) driven by hints from Quantum Gravity (QG)
- Possibility of LI violation or different realization than SR:
 - → String Theory, Loop QG, non-commutative geometry, space-time foam, brane-world background, "emergent gravity*, ...
- → local (LI) may be not exact symmetry of the vacuum
- → The Lorentz Symmetry breaking is not expected in all models but its detection could be <u>a signature</u> of Quantum Gravity

Tests of LIV & Astrophysics

Astrophysical messengers

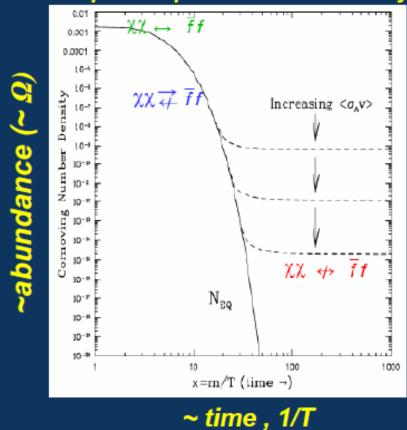
Photons: simple modeling, limited in ΔE

Electrons: synchrotron radiation of pulsars

UHECRs: model dependent formalism

for threshold modifications of the GZK limit

Neutrino: limited in statistics, not seen from sources


Gravitons: not seen yet

Astrophysical experiments with Photons

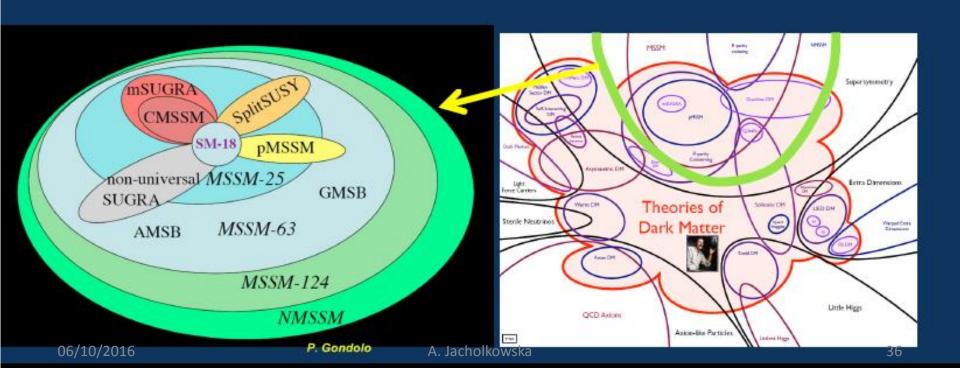
- Space missions: excellent space detectors for violent event detection Pulsars, GRBs, AGNs – past BATSE, HETE2, present SWIFT, Fermi, future SVOM, ...
- Ground based telescopes: highest ΔE, limited variability of the AGN flares H.E.S.S., MAGIC, VERITAS, and future CTA

Paradigme des WIMPs

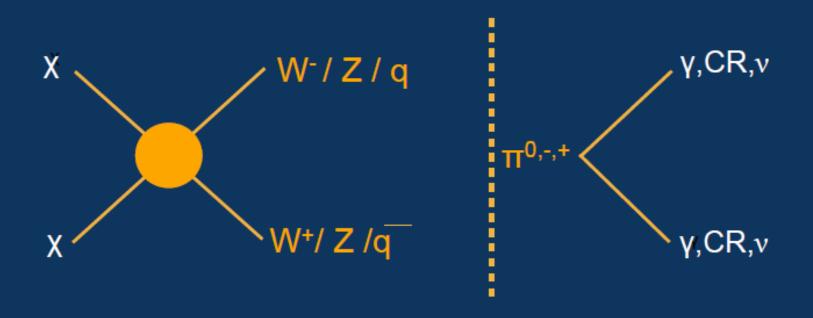
Thermal particle production in the Early Universe

$$\Omega_{Wimp} \approx \frac{10^{-26} cm^{-3} s^{-1}}{\langle \sigma v \rangle} \approx 0.27$$

$$\langle \sigma v \rangle_{\sim weak} \sim \frac{\alpha_{weak}^{2}}{m_{WIMP}^{2}} \sim 10^{-25} cm^{-3} s^{-1}$$

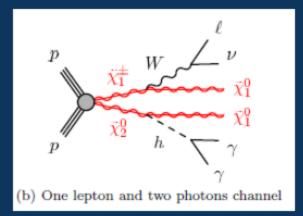

~ 100 GeV

Jungman+, Phys. Rept. (1996)


Deux quantités à priori non liées <σv> annihilation → ΩDM cosmologique

- Thermally produced WIMPs can have masses from a few GeV to upto ~100 TeV.
- The most studied WIMP candidate is realized within Supersymmetry. By naturalness arguments, WIMP masses above about ~TeV are disfavoured in Supersymmetry.

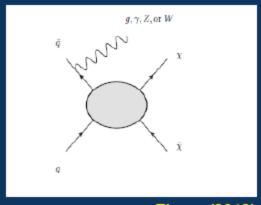
See however e.g, Dine (2015), "Naturalness under stress"



Indirect detection of WIMPS

$$\frac{d\Phi_{\gamma}}{dE_{\gamma}} = \underbrace{\frac{1}{4\pi} \frac{\langle \sigma v \rangle}{2m_{\chi}^2} \sum_{f} \frac{dN_{\gamma}^f}{dE_{\gamma}} B_f}_{\Phi_{PP}} \times \underbrace{\int_{\Delta\Omega} \int_{l.o.s.} \rho^2(r) dl \ d\Omega'}_{\text{J-factor}}$$

CTA VS LHC


e.g. Aad+ (2015a) SUSY particles (here charginos and neutralinos)?

b χ $\bar{\chi}$ $\bar{\chi}$

DM final states with missing transverse energy.

e.g. Aad+ (2015b)

Mono-X

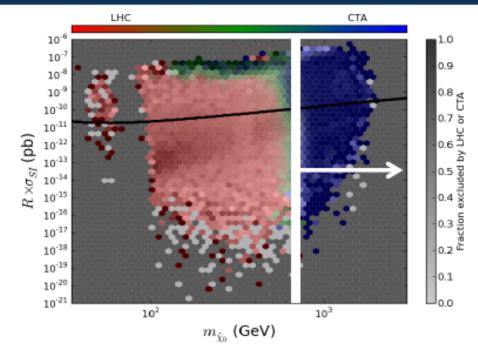
e.g. Zhou+ (2013)

LHC → new particles

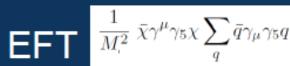
new particles → dark matter?

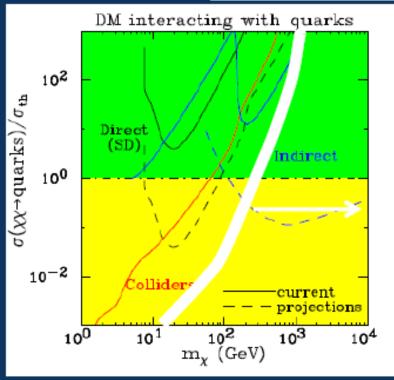
MODELS CONSIDERED

The pMSSM (19 parameters)


- Preserves Standard Model symmetries
- Lightest neutralino is the LSP.
- No assumptions wrt SUSY-breaking, simplifying assumptions on masses and couplings

→ encompasses all relevant phenomenology (at least that's the hope) for SUSY models


Effective Field Theory


- Mediated interactions treated as pointlike (valid if momentum transfer << mediator mass)
- possible operators restricted by symmetries only.
- Three parameters: DM mass and cut-off scale, coupling
- → Allows to parametrize results in terms of mass and interaction strength but considering different interactions.
- → conclusions reasonably model-independent.

pMSSM19

Cahill-Rawley+ (2015)

Arrenberg+ [Snowmass] (2013)

WIMP masses > 1TeV not in reach for LHC