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Unlocked software performance

The Paradigm Change in Science

From Experiments to Simulations

� Simulations is now an integral
part of the Scientic Method

� Scientic Computing enables
larger, faster, more accurate
Research

� Fast Simulation is Time Travel as
scientic results are now more
readily available

Local Galaxy Cluster Simulation - Illustris project

Computing is rst and foremost a mainstream science tool
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The Paradigm Change in Science

The Parallel Hell

� Heat Wall: Growing cores
instead of GHz

� Hierarchical and heterogeneous
parallel systems are the norm

� The Free Lunch is over as
hardware complexity rises faster
than the average developer skills

Local Galaxy Cluster Simulation - Illustris project

The real challenge in HPC is the Expressiveness/Efficiency War
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The Expressiveness/Efficiency War

Single Core Era

Performance

Expressiveness

C/Fort.

C++

Java

Multi-Core/SIMD Era

Performance

Expressiveness

Sequential

Threads

SIMD

Heterogenous Era

Performance

Expressiveness

Sequential

SIMD

Threads

GPU
Phi

Distributed

As parallel systems complexity grows, the expressiveness gap turns into an ocean
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Designing tools for Scientic Computing

Objectives

1. Be non-disruptive

2. Domain driven optimizations

3. Provide intuitive API for the user

4. Support a wide architectural landscape

5. Be efficient

Our Approach

� Design tools as C++ libraries (1)
� Design these libraries as Domain Specic Embedded Languages (DSEL) (2+3)
� Use Parallel Programming Abstractions as parallel components (4)
� Use Generative Programming to deliver performance (5)
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Talk Layout

Introduction

Abstractions & Efficiency

Experimental Results

Conclusion
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Why Parallel Programming Models ?

Limits of regular tools

� Unstructured parallelism is error-prone
� Low level parallel tools are non-composable
� Contribute to the Expressiveness Gap

Available Models

� Performance centric: P-RAM, LOG-P, BSP
� Pattern centric: Futures, Skeletons
� Data centric: HTA, PGAS
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Parallel Skeletons [Cole 89]

Principles

� There are patterns in parallel applications
� Those patterns can be generalized in Skeletons
� Applications are assembled as a combination of such patterns

Functional point of view

� Skeletons are Higher-Order Functions
� Skeletons support a compositionnal semantic
� Applications become composition of state-less functions
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Parallel Skeletons [Cole 89]

Principles

� There are patterns in parallel applications
� Those patterns can be generalized in Skeletons
� Applications are assembled as a combination of such patterns

Classical Skeletons

� Data parallel: map, fold, scan
� Task parallel: par, pipe, farm
� More complex: Distribuable Homomorphism, Divide & Conquer, …
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Domain Specic Embedded Languages

Domain Specic Languages

� Non-Turing complete declarative languages
� Solve a single type of problems
� Express what to do instead of how to do it
� E.g: SQL, M, M, …

From DSL to DSEL [Abrahams 2004]

� A DSL incorporates domain-specic notation, constructs, and abstractions as
fundamental design considerations.

� A Domain Specic Embedded Languages (DSEL) is simply a library that meets the
same criteria

� Generative Programming is one way to design such libraries
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Generative Programming [Eisenecker 97]

Domain Specific
Application Description

Generative Component Concrete Application

Translator

Parametric 
Sub-components
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Meta-programming as a Tool

Denition
Meta-programming is the writing of computer programs that analyse, transform and
generate other programs (or themselves) as their data.

Meta-programmable Languages

� metaOCAML : runtime code generation via code quoting
� Template Haskell : compile-time code generation via templates
� C++ : compile-time code generation via templates

C++ meta-programming

� Relies on the Turing-complete C++  sub-language
� Handles types and integral constants at compile-time
�  classes and functions act as code quoting
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The Expression Templates Idiom

Principles

� Relies on extensive operator
overloading

� Carries semantic information
around code fragment

� Introduces DSLs without
disrupting dev. chain

matrix x(h,w),a(h,w),b(h,w);

x = cos(a) + (b*a);

expr<assign
    ,expr<matrix&>
    ,expr<plus
         , expr<cos
               ,expr<matrix&>
               > 
         , expr<multiplies
               ,expr<matrix&> 
               ,expr<matrix&>
               >
         >(x,a,b);

+

*cos

a ab

=

x

#pragma omp parallel for
for(int j=0;j<h;++j)
{
  for(int i=0;i<w;++i)
  {
    x(j,i) = cos(a(j,i)) 
           + (  b(j,i) 
              * a(j,i)
           );
  }
}

Arbitrary Transforms applied
on the meta-AST

General Principles of Expression Templates
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The Expression Templates Idiom

Advantages

� Generic implementation becomes
self-aware of optimizations

� API abstraction level is arbitrary
high

� Accessible through high-level
tools like B.P
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Our Contributions

Our Strategy

� Applies DSEL generation techniques to parallel programming
� Maintains low cost of abstractions through meta-programming
� Maintains abstraction level via modern library design

Our contributions

Tools Pub. Scope Applications
Quaff ParCo’06 MPI Skeletons Real-time 3D reconstruction
SkellBE PACT’08 Skeleton on Cell BE Real-time Image processing
BSP++ IJPP’12 MPI/OpenMP BSP Bioinformatics, Model Checking
NT2 JPDC’14 Data Parallel Matlab Fluid Dynamics, Vision
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Second Look at our Contributions

Development Limitations

� DSELs are mostly tied to the domain model
� Architecture support is often an afterthought
� Extensibility is difficult as many refactoring are required per architecture
� Example : No proper way to support GPUs with those implementation techniques

Proposed Method

� Extends Generative Programming to take this architecture into account
� Provides an architecture description DSEL
� Integrates this description in the code generation process
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Architecture Aware Generative Programming

14 of 37



Unlocked software performance

Software refactoring

Tools Issues Changes
Quaff Raw skeletons API Re-engineered as part of NT2

SkellBE Too architecture specic Re-engineered as part of NT2

BSP++ Integration issues Integrate hybrid code generation
NT2 Not easily extendable Integrate Quaff Skeleton models
Boost.SIMD - Side product of NT2 restructuration

Conclusion
� Skeletons are ne as parallel middleware
� Model based abstractions are not high level enough
� For low level architectures, the simplest model is often the best
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Boost.SIMD
Pierre Estérie PHD 2010-2014

Principles

� Provides simple C++ API over SIMD
extensions

� Supports every Intel and PPC
instructions sets

� Fully integrates with modern C++
idioms

Sparse Tridiagonal Solver - collaboration with M. Baboulin and Y. wang
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Talk Layout

Introduction

Abstractions & Efficiency

Experimental Results

Conclusion
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The Numerical Template Toolbox
Pierre Estérie PHD 2010-2014

NT2 as a Scientic Computing Library

� Provides a simple, M-like interface for users
� Provides high-performance computing entities and primitives
� Is easily extendable

Components

� Uses Boost.SIMD for in-core optimizations
� Uses recursive parallel skeletons
� Supports task parallelism through Futures

18 of 37



Unlocked software performance

The Numerical Template Toolbox

Principles

� table<T,S> is a simple, multidimensional array object that exactly
mimics M array behavior and functionalities

� 500+ functions usable directly either on table or on any scalar values
as in M

How does it works

� Take a .m le, copy to a .cpp le
� Add #include <nt2/nt2.hpp> and do cosmetic changes
� Compile the le and link with libnt2.a
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NT2 - From M to C++

M code
A1 = 1:1000;
A2 = A1 + randn(size(A1));
X = lu(A1*A1’);

rms = sqrt( sum(sqr(A1(:) - A2(:))) / numel(A1) );

NT2 code
table <double > A1 = _(1. ,1000.);
table <double > A2 = A1 + randn(size(A1));
table <double > X = lu( mtimes(A1 , trans(A1) );

double rms = sqrt( sum(sqr(A1(_) - A2(_))) / numel(A1) );
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Parallel Skeletons extraction process

A = B / sum(C+D);

=

A /

B sum

+

C D

fold

transform
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Parallel Skeletons extraction process

A = B / sum(C+D);

; ;

=

A /

B sum

+

C D

fold

transform

=

tmp sum

+

C D

fold

⇒
=

A /

B tmp

transform
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From data to task parallelism
Antoine Tran Tan PHD, 2012-2015

Limits of the fork-join model

� Synchronization cost due to implicit barriers
� Under-exploitation of potential parallelism
� Poor data locality and no inter-statement optimization

Skeletons from the Future

� Adapt current skeletons for taskication
� Use Futures ( or HPX) to automatically pipeline
� Derive a dependency graph between statements
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Parallel Skeletons extraction process - Take 2

A = B / sum(C+D);

; ;

=

tmp sum

+

C D

fold

=

A /

B tmp

transform

24 of 37



Unlocked software performance

Parallel Skeletons extraction process - Take 2

A = B / sum(C+D);

fold

=

tmp(3) sum(3)

+

C(:, 3) D(:, 3)
transform

=

A(:, 3) /

B(:, 3) tmp(3)

fold

=

tmp(2) sum(2)

+

C(:, 2) D(:, 2)
transform

=

A(:, 2) /

B(:, 2) tmp(2)

workerfold,simd

=

tmp(1) sum

+

C(:, 1) D(:, 1)
workertransform,simd

=

A(:, 1) /

B(:, 1) tmp(1)

spawnertransform,OpenMP

spawnertransform,OpenMP

;
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Motion Detection
Lacassagne et al., ICIP 2009

� Sigma-Delta algorithm based on background substraction
� Use local gaussian model of lightness variation to detect motion
� Challenge: Very low arithmetic density
� Challenge: Integer-based implementation with small range
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Motion Detection

table <char > sigma_delta( table <char >& background
, table <char > const& frame
, table <char >& variance
)

{
// Estimate Raw Movement
background = selinc( background < frame

, seldec(background > frame , background)
);

table <char > diff = dist(background , frame);

// Compute Local Variance
table <char > sig3 = muls(diff ,3);

var = if_else( diff != 0
, selinc( variance < sig3

, seldec( var > sig3 , variance)
)

, variance
);

// Generate Movement Label
return if_zero_else_one( diff < variance );

}
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Motion Detection
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Black and Scholes Option Pricing

NT2 Code
table <float > blackscholes( table <float > const& Sa, table <float > const& Xa

, table <float > const& Ta
, table <float > const& ra, table <float > const& va
)

{
table <float > da = sqrt(Ta);
table <float > d1 = log(Sa/Xa) + (sqr(va)*0.5f+ra)*Ta/(va*da);
table <float > d2 = d1-va*da;

return Sa*normcdf(d1)- Xa*exp(-ra*Ta)*normcdf(d2);
}
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Black and Scholes Option Pricing

NT2 Code with loop fusion
table <float > blackscholes( table <float > const& Sa, table <float > const& Xa

, table <float > const& Ta
, table <float > const& ra, table <float > const& va
)

{
// Preallocate temporary tables
table <float > da(extent(Ta)), d1(extent(Ta)), d2(extent(Ta)), R(extent(Ta));

// tie merge loop nest and increase cache locality
tie(da,d1 ,d2,R) = tie( sqrt(Ta)

, log(Sa/Xa) + (sqr(va)*0.5f+ra)*Ta/(va*da)
, d1-va*da
, Sa*normcdf(d1)- Xa*exp(-ra*Ta)*normcdf(d2)
);

return R;
}

29 of 37



Unlocked software performance

Black and Scholes Option Pricing
Performance
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Black and Scholes Option Pricing
Performance with loop fusion/futurisation
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LU Decomposition
Algorithm

A00

A01 A02A10

A20 A11

A21

A12

A22 A11

A12A21
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A22

step 1

step 2

step 3

step 4

step 5

step 6

step 7

DGETRF

DGESSM

DTSTRF

DSSSSM
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LU Decomposition
Performance
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Conclusion

Parallel Computing for Scientist

� Software Libraries built as Generic and Generative components can solve a large
chunk of parallelism related problems while being easy to use.

� Like regular language, DSEL needs informations about the hardware system
� Integrating hardware descriptions as Generic components increases tools portability

and re-targetability

Our Achievements
� A new method for parallel software development
� Efficient libraries working on large subset of hardware
� High level of performances across a wide application spectrum
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Perspectives

DSEL as C++ rst class idiom

� Build partial evaluation into the language
� Ease transition between regular and meta C++
� Mid-term Prospect: metaOCAML like quoting for C++

DSEL and compilers relationship

� C++ DSEL hits a limit on their applicability
� Compilers often lack high level informations for proper optimization
� Mid-term Prospect: Hybrid library/compiler approaches for DSEL
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