
Domain Specic Embedded Languages in C++
Contributions to HPC

Unlocked software performance

Joel Falcou

NumScale

May 27, 2016

Unlocked software performance

The Paradigm Change in Science

From Experiments to Simulations

� Simulations is now an integral
part of the Scientic Method

� Scientic Computing enables
larger, faster, more accurate
Research

� Fast Simulation is Time Travel as
scientic results are now more
readily available

Local Galaxy Cluster Simulation - Illustris project

Computing is rst and foremost a mainstream science tool

2 of 37

Unlocked software performance

The Paradigm Change in Science

The Parallel Hell

� Heat Wall: Growing cores
instead of GHz

� Hierarchical and heterogeneous
parallel systems are the norm

� The Free Lunch is over as
hardware complexity rises faster
than the average developer skills

Local Galaxy Cluster Simulation - Illustris project

The real challenge in HPC is the Expressiveness/Efficiency War

2 of 37

Unlocked software performance

The Expressiveness/Efficiency War

Single Core Era

Performance

Expressiveness

C/Fort.

C++

Java

Multi-Core/SIMD Era

Performance

Expressiveness

Sequential

Threads

SIMD

Heterogenous Era

Performance

Expressiveness

Sequential

SIMD

Threads

GPU
Phi

Distributed

As parallel systems complexity grows, the expressiveness gap turns into an ocean

3 of 37

Unlocked software performance

Designing tools for Scientic Computing

Objectives

1. Be non-disruptive

2. Domain driven optimizations

3. Provide intuitive API for the user

4. Support a wide architectural landscape

5. Be efficient

Our Approach

� Design tools as C++ libraries (1)
� Design these libraries as Domain Specic Embedded Languages (DSEL) (2+3)
� Use Parallel Programming Abstractions as parallel components (4)
� Use Generative Programming to deliver performance (5)

4 of 37

Unlocked software performance

Designing tools for Scientic Computing

Objectives

1. Be non-disruptive

2. Domain driven optimizations

3. Provide intuitive API for the user

4. Support a wide architectural landscape

5. Be efficient

Our Approach

� Design tools as C++ libraries (1)
� Design these libraries as Domain Specic Embedded Languages (DSEL) (2+3)
� Use Parallel Programming Abstractions as parallel components (4)
� Use Generative Programming to deliver performance (5)

4 of 37

Unlocked software performance

Talk Layout

Introduction

Abstractions & Efficiency

Experimental Results

Conclusion

5 of 37

Unlocked software performance

Why Parallel Programming Models ?

Limits of regular tools

� Unstructured parallelism is error-prone
� Low level parallel tools are non-composable
� Contribute to the Expressiveness Gap

Available Models

� Performance centric: P-RAM, LOG-P, BSP
� Pattern centric: Futures, Skeletons
� Data centric: HTA, PGAS

6 of 37

Unlocked software performance

Why Parallel Programming Models ?

Limits of regular tools

� Unstructured parallelism is error-prone
� Low level parallel tools are non-composable
� Contribute to the Expressiveness Gap

Available Models

� Performance centric: P-RAM, LOG-P, BSP
� Pattern centric: Futures, Skeletons
� Data centric: HTA, PGAS

6 of 37

Unlocked software performance

Why Parallel Programming Models ?

Limits of regular tools

� Unstructured parallelism is error-prone
� Low level parallel tools are non-composable
� Contribute to the Expressiveness Gap

Available Models

� Performance centric: P-RAM, LOG-P, BSP
� Pattern centric: Futures, Skeletons
� Data centric: HTA, PGAS

6 of 37

Unlocked software performance

Parallel Skeletons [Cole 89]

Principles

� There are patterns in parallel applications
� Those patterns can be generalized in Skeletons
� Applications are assembled as a combination of such patterns

Functional point of view

� Skeletons are Higher-Order Functions
� Skeletons support a compositionnal semantic
� Applications become composition of state-less functions

7 of 37

Unlocked software performance

Parallel Skeletons [Cole 89]

Principles

� There are patterns in parallel applications
� Those patterns can be generalized in Skeletons
� Applications are assembled as a combination of such patterns

Classical Skeletons

� Data parallel: map, fold, scan
� Task parallel: par, pipe, farm
� More complex: Distribuable Homomorphism, Divide & Conquer, …

7 of 37

Unlocked software performance

Domain Specic Embedded Languages

Domain Specic Languages

� Non-Turing complete declarative languages
� Solve a single type of problems
� Express what to do instead of how to do it
� E.g: SQL, M, M, …

From DSL to DSEL [Abrahams 2004]

� A DSL incorporates domain-specic notation, constructs, and abstractions as
fundamental design considerations.

� A Domain Specic Embedded Languages (DSEL) is simply a library that meets the
same criteria

� Generative Programming is one way to design such libraries

8 of 37

Unlocked software performance

Generative Programming [Eisenecker 97]

Domain Specific
Application Description

Generative Component Concrete Application

Translator

Parametric
Sub-components

9 of 37

Unlocked software performance

Meta-programming as a Tool

Denition
Meta-programming is the writing of computer programs that analyse, transform and
generate other programs (or themselves) as their data.

Meta-programmable Languages

� metaOCAML : runtime code generation via code quoting
� Template Haskell : compile-time code generation via templates
� C++ : compile-time code generation via templates

C++ meta-programming

� Relies on the Turing-complete C++  sub-language
� Handles types and integral constants at compile-time
�  classes and functions act as code quoting

10 of 37

Unlocked software performance

The Expression Templates Idiom

Principles

� Relies on extensive operator
overloading

� Carries semantic information
around code fragment

� Introduces DSLs without
disrupting dev. chain

matrix x(h,w),a(h,w),b(h,w);

x = cos(a) + (b*a);

expr<assign
 ,expr<matrix&>
 ,expr<plus
 , expr<cos
 ,expr<matrix&>
 >
 , expr<multiplies
 ,expr<matrix&>
 ,expr<matrix&>
 >
 >(x,a,b);

+

*cos

a ab

=

x

#pragma omp parallel for
for(int j=0;j<h;++j)
{
 for(int i=0;i<w;++i)
 {
 x(j,i) = cos(a(j,i))
 + (b(j,i)
 * a(j,i)
);
 }
}

Arbitrary Transforms applied
on the meta-AST

General Principles of Expression Templates

11 of 37

Unlocked software performance

The Expression Templates Idiom

Advantages

� Generic implementation becomes
self-aware of optimizations

� API abstraction level is arbitrary
high

� Accessible through high-level
tools like B.P

matrix x(h,w),a(h,w),b(h,w);

x = cos(a) + (b*a);

expr<assign
 ,expr<matrix&>
 ,expr<plus
 , expr<cos
 ,expr<matrix&>
 >
 , expr<multiplies
 ,expr<matrix&>
 ,expr<matrix&>
 >
 >(x,a,b);

+

*cos

a ab

=

x

#pragma omp parallel for
for(int j=0;j<h;++j)
{
 for(int i=0;i<w;++i)
 {
 x(j,i) = cos(a(j,i))
 + (b(j,i)
 * a(j,i)
);
 }
}

Arbitrary Transforms applied
on the meta-AST

General Principles of Expression Templates

11 of 37

Unlocked software performance

Our Contributions

Our Strategy

� Applies DSEL generation techniques to parallel programming
� Maintains low cost of abstractions through meta-programming
� Maintains abstraction level via modern library design

Our contributions

Tools Pub. Scope Applications
Quaff ParCo’06 MPI Skeletons Real-time 3D reconstruction
SkellBE PACT’08 Skeleton on Cell BE Real-time Image processing
BSP++ IJPP’12 MPI/OpenMP BSP Bioinformatics, Model Checking
NT2 JPDC’14 Data Parallel Matlab Fluid Dynamics, Vision

12 of 37

Unlocked software performance

Second Look at our Contributions

Development Limitations

� DSELs are mostly tied to the domain model
� Architecture support is often an afterthought
� Extensibility is difficult as many refactoring are required per architecture
� Example : No proper way to support GPUs with those implementation techniques

Proposed Method

� Extends Generative Programming to take this architecture into account
� Provides an architecture description DSEL
� Integrates this description in the code generation process

13 of 37

Unlocked software performance

Second Look at our Contributions

Development Limitations

� DSELs are mostly tied to the domain model
� Architecture support is often an afterthought
� Extensibility is difficult as many refactoring are required per architecture
� Example : No proper way to support GPUs with those implementation techniques

Proposed Method

� Extends Generative Programming to take this architecture into account
� Provides an architecture description DSEL
� Integrates this description in the code generation process

13 of 37

Unlocked software performance

Architecture Aware Generative Programming

14 of 37

Unlocked software performance

Software refactoring

Tools Issues Changes
Quaff Raw skeletons API Re-engineered as part of NT2

SkellBE Too architecture specic Re-engineered as part of NT2

BSP++ Integration issues Integrate hybrid code generation
NT2 Not easily extendable Integrate Quaff Skeleton models
Boost.SIMD - Side product of NT2 restructuration

Conclusion
� Skeletons are ne as parallel middleware
� Model based abstractions are not high level enough
� For low level architectures, the simplest model is often the best

15 of 37

Unlocked software performance

Boost.SIMD
Pierre Estérie PHD 2010-2014

Principles

� Provides simple C++ API over SIMD
extensions

� Supports every Intel and PPC
instructions sets

� Fully integrates with modern C++
idioms

Sparse Tridiagonal Solver - collaboration with M. Baboulin and Y. wang

16 of 37

Unlocked software performance

Talk Layout

Introduction

Abstractions & Efficiency

Experimental Results

Conclusion

17 of 37

Unlocked software performance

The Numerical Template Toolbox
Pierre Estérie PHD 2010-2014

NT2 as a Scientic Computing Library

� Provides a simple, M-like interface for users
� Provides high-performance computing entities and primitives
� Is easily extendable

Components

� Uses Boost.SIMD for in-core optimizations
� Uses recursive parallel skeletons
� Supports task parallelism through Futures

18 of 37

Unlocked software performance

The Numerical Template Toolbox

Principles

� table<T,S> is a simple, multidimensional array object that exactly
mimics M array behavior and functionalities

� 500+ functions usable directly either on table or on any scalar values
as in M

How does it works

� Take a .m le, copy to a .cpp le
� Add #include <nt2/nt2.hpp> and do cosmetic changes
� Compile the le and link with libnt2.a

19 of 37

Unlocked software performance

The Numerical Template Toolbox

Principles

� table<T,S> is a simple, multidimensional array object that exactly
mimics M array behavior and functionalities

� 500+ functions usable directly either on table or on any scalar values
as in M

How does it works

� Take a .m le, copy to a .cpp le

� Add #include <nt2/nt2.hpp> and do cosmetic changes
� Compile the le and link with libnt2.a

19 of 37

Unlocked software performance

The Numerical Template Toolbox

Principles

� table<T,S> is a simple, multidimensional array object that exactly
mimics M array behavior and functionalities

� 500+ functions usable directly either on table or on any scalar values
as in M

How does it works

� Take a .m le, copy to a .cpp le
� Add #include <nt2/nt2.hpp> and do cosmetic changes

� Compile the le and link with libnt2.a

19 of 37

Unlocked software performance

The Numerical Template Toolbox

Principles

� table<T,S> is a simple, multidimensional array object that exactly
mimics M array behavior and functionalities

� 500+ functions usable directly either on table or on any scalar values
as in M

How does it works

� Take a .m le, copy to a .cpp le
� Add #include <nt2/nt2.hpp> and do cosmetic changes
� Compile the le and link with libnt2.a

19 of 37

Unlocked software performance

NT2 - From M to C++

M code
A1 = 1:1000;
A2 = A1 + randn(size(A1));
X = lu(A1*A1’);

rms = sqrt(sum(sqr(A1(:) - A2(:))) / numel(A1));

NT2 code
table <double > A1 = _(1. ,1000.);
table <double > A2 = A1 + randn(size(A1));
table <double > X = lu(mtimes(A1 , trans(A1));

double rms = sqrt(sum(sqr(A1(_) - A2(_))) / numel(A1));

20 of 37

Unlocked software performance

Parallel Skeletons extraction process

A = B / sum(C+D);

=

A /

B sum

+

C D

fold

transform

21 of 37

Unlocked software performance

Parallel Skeletons extraction process

A = B / sum(C+D);

; ;

=

A /

B sum

+

C D

fold

transform

=

tmp sum

+

C D

fold

⇒
=

A /

B tmp

transform

22 of 37

Unlocked software performance

From data to task parallelism
Antoine Tran Tan PHD, 2012-2015

Limits of the fork-join model

� Synchronization cost due to implicit barriers
� Under-exploitation of potential parallelism
� Poor data locality and no inter-statement optimization

Skeletons from the Future

� Adapt current skeletons for taskication
� Use Futures ( or HPX) to automatically pipeline
� Derive a dependency graph between statements

23 of 37

Unlocked software performance

From data to task parallelism
Antoine Tran Tan PHD, 2012-2015

Limits of the fork-join model

� Synchronization cost due to implicit barriers
� Under-exploitation of potential parallelism
� Poor data locality and no inter-statement optimization

Skeletons from the Future

� Adapt current skeletons for taskication
� Use Futures ( or HPX) to automatically pipeline
� Derive a dependency graph between statements

23 of 37

Unlocked software performance

Parallel Skeletons extraction process - Take 2

A = B / sum(C+D);

; ;

=

tmp sum

+

C D

fold

=

A /

B tmp

transform

24 of 37

Unlocked software performance

Parallel Skeletons extraction process - Take 2

A = B / sum(C+D);

fold

=

tmp(3) sum(3)

+

C(:, 3) D(:, 3)
transform

=

A(:, 3) /

B(:, 3) tmp(3)

fold

=

tmp(2) sum(2)

+

C(:, 2) D(:, 2)
transform

=

A(:, 2) /

B(:, 2) tmp(2)

workerfold,simd

=

tmp(1) sum

+

C(:, 1) D(:, 1)
workertransform,simd

=

A(:, 1) /

B(:, 1) tmp(1)

spawnertransform,OpenMP

spawnertransform,OpenMP

;

25 of 37

Unlocked software performance

Motion Detection
Lacassagne et al., ICIP 2009

� Sigma-Delta algorithm based on background substraction
� Use local gaussian model of lightness variation to detect motion
� Challenge: Very low arithmetic density
� Challenge: Integer-based implementation with small range

26 of 37

Unlocked software performance

Motion Detection

table <char > sigma_delta(table <char >& background
, table <char > const& frame
, table <char >& variance
)

{
// Estimate Raw Movement
background = selinc(background < frame

, seldec(background > frame , background)
);

table <char > diff = dist(background , frame);

// Compute Local Variance
table <char > sig3 = muls(diff ,3);

var = if_else(diff != 0
, selinc(variance < sig3

, seldec(var > sig3 , variance)
)

, variance
);

// Generate Movement Label
return if_zero_else_one(diff < variance);

}

27 of 37

Unlocked software performance

Motion Detection

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

512x512 1024x1024

c
y
c
le

s
/e

le
m

e
n
t

Image Size (N x N)

x
6
.8

x
1
4
.8

x
1
6
.5

x
2
.1

x
3
.6

x
6
.7

x
1
5
.3

x
1
8

x
2
.3

x
3
.9

9

x
1
0
.8

x
1
0
.8

SCALAR
HALF CORE
FULL CORE

SIMD
JRTIP2008

SIMD + HALF CORE
SIMD + FULL CORE

28 of 37

Unlocked software performance

Black and Scholes Option Pricing

NT2 Code
table <float > blackscholes(table <float > const& Sa, table <float > const& Xa

, table <float > const& Ta
, table <float > const& ra, table <float > const& va
)

{
table <float > da = sqrt(Ta);
table <float > d1 = log(Sa/Xa) + (sqr(va)*0.5f+ra)*Ta/(va*da);
table <float > d2 = d1-va*da;

return Sa*normcdf(d1)- Xa*exp(-ra*Ta)*normcdf(d2);
}

29 of 37

Unlocked software performance

Black and Scholes Option Pricing

NT2 Code with loop fusion
table <float > blackscholes(table <float > const& Sa, table <float > const& Xa

, table <float > const& Ta
, table <float > const& ra, table <float > const& va
)

{
// Preallocate temporary tables
table <float > da(extent(Ta)), d1(extent(Ta)), d2(extent(Ta)), R(extent(Ta));

// tie merge loop nest and increase cache locality
tie(da,d1 ,d2,R) = tie(sqrt(Ta)

, log(Sa/Xa) + (sqr(va)*0.5f+ra)*Ta/(va*da)
, d1-va*da
, Sa*normcdf(d1)- Xa*exp(-ra*Ta)*normcdf(d2)
);

return R;
}

29 of 37

Unlocked software performance

Black and Scholes Option Pricing
Performance

1000000

0

50

100

150

x1
.8

9

x2
.9

1

x5
.5

8

x6
.3

0

Size

cy
cl
e/
va
lu
e

scalar

SSE2

AVX2

SSE2, 4 cores

AVX2, 4 cores

30 of 37

Unlocked software performance

Black and Scholes Option Pricing
Performance with loop fusion/futurisation

1000000

0

50

100

150

x2
.2

7

x4
.1

3

x8
.0

5

x1
1.

12

Size

cy
cl
e/
va
lu
e

scalar

SSE2

AVX2

SSE2, 4 cores

AVX2, 4 cores

31 of 37

Unlocked software performance

LU Decomposition
Algorithm

A00

A01 A02A10

A20 A11

A21

A12

A22 A11

A12A21

A22

A22

step 1

step 2

step 3

step 4

step 5

step 6

step 7

DGETRF

DGESSM

DTSTRF

DSSSSM

32 of 37

Unlocked software performance

LU Decomposition
Performance

0 10 20 30 40 50

0

50

100

Number of cores

M
ed

ia
n

G
FL

O
PS

8000× 8000 LU decomposition

NT2
Intel MKL

33 of 37

Unlocked software performance

Talk Layout

Introduction

Abstractions & Efficiency

Experimental Results

Conclusion

34 of 37

Unlocked software performance

Conclusion

Parallel Computing for Scientist

� Software Libraries built as Generic and Generative components can solve a large
chunk of parallelism related problems while being easy to use.

� Like regular language, DSEL needs informations about the hardware system
� Integrating hardware descriptions as Generic components increases tools portability

and re-targetability

Our Achievements
� A new method for parallel software development
� Efficient libraries working on large subset of hardware
� High level of performances across a wide application spectrum

35 of 37

Unlocked software performance

Conclusion

Parallel Computing for Scientist

� Software Libraries built as Generic and Generative components can solve a large
chunk of parallelism related problems while being easy to use.

� Like regular language, DSEL needs informations about the hardware system
� Integrating hardware descriptions as Generic components increases tools portability

and re-targetability

Our Achievements
� A new method for parallel software development
� Efficient libraries working on large subset of hardware
� High level of performances across a wide application spectrum

35 of 37

Unlocked software performance

Perspectives

DSEL as C++ rst class idiom

� Build partial evaluation into the language
� Ease transition between regular and meta C++
� Mid-term Prospect: metaOCAML like quoting for C++

DSEL and compilers relationship

� C++ DSEL hits a limit on their applicability
� Compilers often lack high level informations for proper optimization
� Mid-term Prospect: Hybrid library/compiler approaches for DSEL

36 of 37

Thanks for your attention

	Introduction
	Abstractions & Efficiency
	Experimental Results
	Conclusion

