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Life is Amazing

Hardware is advancing at a
breakneck pace

Nv GK110
(2012)

Intel Haswell
(2013)

AMD Fiji (2014) Nvidia GM204
(2014)

Intel Broadwell
(2015)
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But. . .

Be honest: Have you noticed your
code getting any faster lately?

E.g. Sandy Bridge ! Broadwell
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Two possible ways forward:

Be content with what you can get, don’t worry too much
about performance.

Try harder.
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High Performance: What?

What is. . .High Performance Computing?
The science of making code actually fast.

achieve the best performance possible on a given machine.

NO: I made my code 300,000x faster.

YES: My code achieves 37% of the achievable floating point
capability of my machine.

Performance: Measure ! Understand ! Improve ! Measure !
Understand ! Improve ! · · ·
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How do we make the
hardware like our code?
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But. . .

Scripting languages are

SLOW

So using them for high performance makes no sense, right?
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Compute result

Organize computation

Write code

Describe computation
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What is OpenCL?

OpenCL (Open Computing Language) is an
open, royalty-free standard for general purpose
parallel programming across CPUs, GPUs and
other processors. [OpenCL 1.1 spec]

Device-neutral (Nv GPU, AMD GPU,
Intel/AMD CPU)

Vendor-neutral

JIT built into the standard

Defines:

Host-side programming interface (library)

Device-side programming language (!)

Main advantage: OpenCL’s abstract
model of the machine is sensible and
likely to stick around. . .

. . . on GPUs and CPUs.

OpenCL/CUDA/ISPC: same idea.

Low-level: sensible
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Moving data

Data is moved through wires.
Wires behave like an RC circuit.

Trade-o↵:

Longer response time (“latency”)

Higher current (more power)

Physics says: Communication is slow,

power-hungry, or both.
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Programming model

Time

Stall

Ready

Not all computations re-
quire strict ordering.

Especially not numerical
ones.

Time

Stall

Ready

Stall

Ready

Stall

Ready

Stall

Ready

Inspired by [Fatahalian ‘09]

Concurrency hides latency

Key: No ordering req’mts
I.e. no dependencies

Issue: Start-at-the top,
end-at-the bottom code

Not parallel programming
But: parallel execution
relies on the same
property

Andreas Klöckner DSL to Manycore



Intro Machines PyOpenCL Key Algorithm: Scan Loo.py Conclusions

Programming model

Time

Stall

Ready

Not all computations re-
quire strict ordering.

Especially not numerical
ones.

Time

Stall

Ready

Stall

Ready

Stall

Ready

Stall

Ready

Inspired by [Fatahalian ‘09]

Concurrency hides latency

Key: No ordering req’mts
I.e. no dependencies

Issue: Start-at-the top,
end-at-the bottom code

Not parallel programming
But: parallel execution
relies on the same
property
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Andreas Klöckner DSL to Manycore



Intro Machines PyOpenCL Key Algorithm: Scan Loo.py Conclusions

Programming model

Time

Stall

Ready

Not all computations re-
quire strict ordering.

Especially not numerical
ones.

Time

Stall

Ready

Stall

Ready

Stall

Ready

Stall

Ready

Inspired by [Fatahalian ‘09]

Concurrency hides latency

Key: No ordering req’mts
I.e. no dependencies

Issue: Start-at-the top,
end-at-the bottom code

Not parallel programming
But: parallel execution
relies on the same
property
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Now add parallelism

Compelled to add concurrency to
programming model.

Might as well use it for parallel
execution.

Seen: Need concurrency within a core.

Add:

Multiple cores

Vector Parallelism within a core

Programming model must see
(at least) two levels of concur-
rency:

Inside a core

Across cores
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Connection: Hardware $ Programming Model
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Andreas Klöckner DSL to Manycore



Intro Machines PyOpenCL Key Algorithm: Scan Loo.py Conclusions

Connection: Hardware $ Programming Model

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Fetch/
Decode

32 kiB Ctx
Private

(“Registers”)

16 kiB Ctx
Shared

Who care
s ho

w

many
core

s?

Idea:

Program as if there were
“infinitely” many cores

Program as if there were
“infinitely” many ALUs per
core

Consider: Which is easy to do automatically?

Parallel program ! sequential hardware

or

Sequential program ! parallel hardware?

Axis 0

A
xi
s
1

Hardware
Software representation

?

Really: Group provides pool of paral-
lelism to draw from.

Grids can be 1,2,3-dimensional.
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PyOpenCL, PyCUDA: Vital Information

http://mathema.tician.de/

software/pyopencl (or /pycuda)

Downloads:
Direct: PyOpenCL 210k, PyCUDA 250k
Binaries: Win, Debian, Arch, Fedora,
Gentoo, . . .

MIT License

Compiler Cache, Auto cleanup, Error
checking

Require: numpy, Python 2.4+
(Win/OS X/Linux)

Community: mailing list, wiki, add-on
packages (PyFFT, scikits.cuda, Sailfish,
PyWENO, Copperhead. . . )

Andreas Klöckner DSL to Manycore
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Scan: Graph

x0

y0

x1

y1

x2

y2

x3

y3

x4

y4

x5

y5

y1

y2

y3

y4

y5

This can’t possibly be parallelized.
Or can it?

Andreas Klöckner DSL to Manycore



Intro Machines PyOpenCL Key Algorithm: Scan Loo.py Conclusions

Scan: Graph

x0

y0

x1

y1

x2

y2

x3

y3

x4

y4

x5

y5

y1

y2

y3

y4

y5

This can’t possibly be parallelized.
Or can it?
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y4
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This can’t possibly be parallelized.
Or can it?
Can exploit properties of addition:
Associativity, commutativity.
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Scan: Implementation
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Scan: Features

“Map” processing on input: f (xi )
Also: stencils f (xi�1, xi )

“Map” processing on output
Output stencils
Inclusive/Exclusive scan

Segmented scan

Works on compound types

E�cient!

Scan: a fundamental parallel primitive.

Anything involving index
changes/renumbering!
(e.g. sort, filter, . . . )
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Scan: More Algorithms

copy if

remove if

partition

unique

sort (plain and key-value)

build list of lists

All in pyopencl, all built on scan.
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Memory Bandwidth on a GTX 280
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Multiple GPUs via MPI: 16 GPUs vs. 64 CPUs
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Setting the Stage

Idea:

Start with math-y statement of
the operation

“Push a few buttons”
(transformations) to optimize
for the target device

Strongly separate these two
parts

Philosophy:

Avoid “intelligence”

User can assume partial
responsibility for correctness

Embedding in Python provides
generation/transform flexibility

Loopy is infrastructure.

Computational software builds on top of loopy.
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DEMO TIME
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Code Transforms in Loopy

Unroll

Prefetch

Precompute

Tile

Reorder loops

Fix constants

Parallelize

A�ne map loop domains

Texture-based data access

SoA $ AoS
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New Code Transforms in Loopy for 2015

Kernel Fusion

Computation of Intermediate
Results

SIMD Vectorization

Naming of array axes

Aliasing of temporaries

Temporary result bu↵ering

Distributive law

Arbitrary nesting of Data Layouts

Realization of ILP

Image credit: Xray/Stephan Hoyer
Andreas Klöckner DSL to Manycore
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Loopy: Reachable Performance

Intel AMD Nvidia
saxpy [GBytes/s] 18.6 231.0 232.1
sgemm [GFlops/s] 12.3 492.3 369.4
3D Coulomb pot. [M Pairs/s] 231 10949 9985
dG FEM volume [GFlops/s] 77.4 1251 351
dG FEM surface [GFlops/s] 25.9 527 214
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Features

A-priori bounds checking

Generate a sequential version of
the code

Automatic Benchmarking

Automatic Testing
. . . against sequential version
. . . which is easier to verify

Data layout transformation

Fortran program input
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subroutine dgemm(m,n,l,alpha,a,b,c)
implicit none

real⇤8 temp, a(m,l ),b( l ,n),c(m,n), alpha
integer m,n,k, i , j , l

do j = 1,n
do k = 1, l

do i = 1,m
c( i , j ) = c( i , j ) + alpha⇤b(k,j)⇤a( i ,k)

end do

end do

end do

end subroutine

!$loopy begin
! dgemm, = lp.parse fortran(SOURCE, FILENAME)
! dgemm = lp.split iname(dgemm, ”i”, 16,
! outer tag=”g.0”, inner tag=” l .1”)
! dgemm = lp.split iname(dgemm, ”j”, 8,
! outer tag=”g.1”, inner tag=” l .0”)
! dgemm = lp.split iname(dgemm, ”k”, 32)
! RESULT = [dgemm]
!$loopy end

Andreas Klöckner DSL to Manycore
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NUMA Di↵erentiation: Fortran view

do e = 1, elements

do k = 1, Nq
do j = 1, Nq

do i = 1, Nq
do n = 1,Nq

!$loopy begin tagged: local prep
U = Q(n, j , k, 1, e)
V = Q(n, j , k, 2, e)
W = Q(n, j , k, 3, e)
R = Q(n, j , k, 5, e)
T = Q(n, j , k, 6, e)
Qa = Q(n, j , k, 7, e)
Qw = Q(n, j, k, 8, e)

Jrx = volumeGeometricFactors(n, j, k, 1, e)
Jry = volumeGeometricFactors(n, j, k, 2, e)
Jrz = volumeGeometricFactors(n, j, k, 3, e)

Jinv = volumeGeometricFactors(i, j, k, 10, e)

P = p p0⇤(p R⇤T/p p0) ⇤⇤ p Gamma
UdotGradR = (Jrx⇤U + Jry⇤V + Jrz⇤W)/R

!$loopy end tagged: local prep

JinvD = Jinv⇤D(i,n)

!$loopy begin tagged: compute fluxes
Uflux = U⇤UdotGradR + Jrx⇤P
Vflux = V⇤UdotGradR + Jry⇤P
Wflux = W⇤UdotGradR + Jrz⇤P
Rflux = R⇤UdotGradR
Tflux = T⇤UdotGradR

Qaflux = Qa⇤UdotGradR
Qwflux = Qw⇤UdotGradR

!$loopy end tagged: compute fluxes

rhsQ(i, j , k, 1, e) = rhsQ(i, j , k, 1, e) � JinvD⇤Uflux
rhsQ(i, j , k, 2, e) = rhsQ(i, j , k, 2, e) � JinvD⇤Vflux
rhsQ(i, j , k, 3, e) = rhsQ(i, j , k, 3, e) � JinvD⇤Wflux

rhsQ(i, j , k, 5, e) = rhsQ(i, j , k, 5, e) � JinvD⇤Rflux
rhsQ(i, j , k, 6, e) = rhsQ(i, j , k, 6, e) � JinvD⇤Tflux
rhsQ(i, j , k, 7, e) = rhsQ(i, j , k, 7, e) � JinvD⇤Qaflux
rhsQ(i, j , k, 8, e) = rhsQ(i, j , k, 8, e) � JinvD⇤Qwflux

end do

end do

end do

end do

end do
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NUMA Di↵erentiation: Kernel view

(100 more lines of this. . . )
barrier (CLK LOCAL MEM FENCE) /⇤ for temp storage 0 (insn52 conflicts with Qwflux s subst (via ’tmpgrp flux store 13’)) ⇤/;
flux store 13 [ lid (0) + 8 ⇤ lid (1)] = Qw r subst 0 ⇤ UdotGradS subst 0 0;
flux store 12 [8 ⇤ lid (1) + lid (0)] = Qw r subst 0 ⇤ UdotGradR subst 0 0;
barrier (CLK LOCAL MEM FENCE) /⇤ for flux store 12 (insn27 depends on Qwflux r subst) ⇤/;
for ( int n Qwflux = 0; n Qwflux <= 7; ++n Qwflux)
{

rhsQ buf[1].s3 = rhsQ buf[1].s3 + flux store 13 [ lid (0) + 8 ⇤ n Qwflux] ⇤ D fetch[ lid (1) + 8 ⇤ n Qwflux];
rhsQ buf[1].s3 = rhsQ buf[1].s3 + flux store 12 [8 ⇤ lid (1) + n Qwflux] ⇤ D fetch[ lid (0) + 8 ⇤ n Qwflux];

}
barrier (CLK LOCAL MEM FENCE) /⇤ for temp storage 0 (insn55 conflicts with Qaflux s subst (via ’tmpgrp flux store 11’)) ⇤/;
flux store 11 [ lid (0) + 8 ⇤ lid (1)] = Qa r subst 0 ⇤ UdotGradS subst 0 0;
flux store 10 [8 ⇤ lid (1) + lid (0)] = Qa r subst 0 ⇤ UdotGradR subst 0 0;
barrier (CLK LOCAL MEM FENCE) /⇤ for flux store 10 (insn26 depends on Qaflux r subst) ⇤/;
for ( int n Qaflux = 0; n Qaflux <= 7; ++n Qaflux)
{

rhsQ buf[1].s2 = rhsQ buf[1].s2 + flux store 11 [ lid (0) + 8 ⇤ n Qaflux] ⇤ D fetch[ lid (1) + 8 ⇤ n Qaflux];
rhsQ buf[1].s2 = rhsQ buf[1].s2 + flux store 10 [8 ⇤ lid (1) + n Qaflux] ⇤ D fetch[ lid (0) + 8 ⇤ n Qaflux];

}
rhsQ[lid (0) + 8 ⇤ lid (1) + 64 ⇤ k + (2048 ⇤ elements / 4) ⇤ 0 + 512 ⇤ gid(0)] =

volumeGeometricFactors[lid(0) + 8 ⇤ lid(1) + 64 ⇤ k + 4608 + 5632 ⇤ gid(0)] ⇤ �1.0 ⇤ rhsQ buf[0];
rhsQ[lid (0) + 8 ⇤ lid (1) + 64 ⇤ k + (2048 ⇤ elements / 4) ⇤ 1 + 512 ⇤ gid(0)] =

volumeGeometricFactors[lid(0) + 8 ⇤ lid(1) + 64 ⇤ k + 4608 + 5632 ⇤ gid(0)] ⇤ �1.0 ⇤ rhsQ buf[1];
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Applying Optimizations Step-By-Step

Device peak: 220 GB/s
Andreas Klöckner DSL to Manycore
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Conclusions

Exciting time to be in HPC
Many fast and (fortunately!) somewhat coherent developments
Great opportunities!

GPUs and scripting work surprisingly well together
Enable Run-Time Code Generation

Hopes for loopy:
General enough to be broadly useful
Possible future addition: distributed memory

http://www.cs.illinois.edu/

~

andreask/

Andreas Klöckner DSL to Manycore
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PyCUDA

Whetting your appetite

1 import pycuda.driver as cuda
2 import pycuda.autoinit , pycuda.compiler
3 import numpy
4
5 a = numpy.random.randn(4,4).astype(numpy.float32)
6 a gpu = cuda.mem alloc(a.nbytes)
7 cuda.memcpy htod(a gpu, a)

[This is examples/demo.py in the PyCUDA distribution.]
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PyCUDA

Whetting your appetite

1 mod = pycuda.compiler.SourceModule(”””
2 global void twice( float ⇤a)
3 {
4 int idx = threadIdx.x + threadIdx.y⇤4;
5 a[ idx ] ⇤= 2;
6 }
7 ”””)
8
9 func = mod.get function(”twice”)
10 func(a gpu, block=(4,4,1))
11
12 a doubled = numpy.empty like(a)
13 cuda.memcpy dtoh(a doubled, a gpu)
14 print a doubled
15 print a

Compute kernel
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PyCUDA

Whetting your appetite

1 mod = pycuda.compiler.SourceModule(”””
2 global void twice( float ⇤a)
3 {
4 int idx = threadIdx.x + threadIdx.y⇤4;
5 a[ idx ] ⇤= 2;
6 }
7 ”””)
8
9 func = mod.get function(”twice”)
10 func(a gpu, block=(4,4,1))
11
12 a doubled = numpy.empty like(a)
13 cuda.memcpy dtoh(a doubled, a gpu)
14 print a doubled
15 print a

Compute kernel
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PyCUDA

Whetting your appetite, Part II

Did somebody say “Abstraction is good”?
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PyCUDA

Whetting your appetite, Part II

1 import numpy
2 import pycuda.autoinit
3 import pycuda.gpuarray as gpuarray
4
5 a gpu = gpuarray.to gpu(
6 numpy.random.randn(4,4).astype(numpy.float32))
7 a doubled = (2⇤a gpu).get()
8 print a doubled
9 print a gpu
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