

Parallelism in C++
State of the Art
The HPX Parallel Runtime System
The Future, async and dataflow
Concepts of Parallelism
Parallel Algorithms

Parallel Programming with HPX
The HPX Programming Model
Examples:

Fibonacci
Simple Loop Parallelization
SAXPY routine with data locality
Hello Distributed World!
Matrix Transpose

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 2/ 77

Acknowledgements

• Hartmut Kaiser (LSU)

• Bryce Lelbach (LBNL)

• Agustin Berge

• John Biddiscombe (CSCS)

• Patrick Diehl (Bonn)

• Matrin Stumpf (FAU)

• Arne Hendricks (FAU)

• And many others...

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 3/ 77

State of the Art

• Modern architectures impose massive challenges on programmability in
the context of performance portability
• Massive increase in on-node parallelism

• Deep memory hierarchies

• Only portable parallelization solution for C++ programmers (today):
OpenMP and MPI
• Hugely successful for years

• Widely used and supported

• Simple use for simple use cases

• Very portable

• Highly optimized

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 5/ 77

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 6/ 77

The C++ Standard

• C++11 introduced lower level abstractions
• std::thread, std::mutex, std::future, etc.

• Fairly limited (low level), more is needed

• C++ needs stronger support for higher-level parallelism

• New standard: C++17:
• Parallel versions of STL algorithms (P0024R2)

• Several proposals to the Standardization Committee are accepted or
under consideration
• Technical Specification: Concurrency (N4577)

• Other proposals: Coroutines (P0057R2), task blocks (N4411), executors

(P0058R1)

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 7/ 77

The C++ Standard – Our Vision

Currently there is no overarching vision related to higher-level parallelism

• Goal is to standardize a ‘big story’ by 2020

• No need for OpenMP, OpenACC, OpenCL, etc.

• This tutorial tries to show results of our take on this

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 8/ 77

HPX – A general purpose parallel Runtime System

• Solidly based on a theoretical foundation – a well defined, new execution
model (ParalleX)

• Exposes a coherent and uniform, standards-oriented API for ease of
programming parallel and distributed applications.
• Enables to write fully asynchronous code using hundreds of millions of threads.

• Provides unified syntax and semantics for local and remote operations.

• Developed to run at any scale

• Compliant C++ Standard implementation (and more)

• Open Source: Published under the Boost Software License

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 9/ 77

HPX – A general purpose parallel Runtime System

HPX represents an innovative mixture of

• A global system-wide address space (AGAS - Active Global Address
Space)

• Fine grain parallelism and lightweight synchronization

• Combined with implicit, work queue based, message driven computation

• Full semantic equivalence of local and remote execution, and

• Explicit support for hardware accelerators (through percolation)

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 10/ 77

What is a (the) future

A future is an object representing a result which has not been calculated yet

• Enables transparent
synchronization with producer

• Hides notion of dealing with threads

• Makes asynchrony manageable

• Allows for composition of several
asynchronous operations

• Turns concurrency into parallelism

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 11/ 77

What is a (the) future

Many ways to get hold of a future, simplest way is to use (std) async:

int universal_answer () { return 42; }
void deep_thought () {

future <int > promised_answer
= async(& universal_answer);

// do other things for 7.5 million years
cout << promised_answer.get() << endl;
// prints 42, eventually

}

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 12/ 77

Compositional facilities

Sequential composition of futures:

future <string > make_string () {
future <int > f1 =

async ([]() -> int { return 123; });
future <string > f2 = f1.then(

[](future <int > f) -> string
{

// here .get() won’t block
return to_string(f.get());

});
return f2;

}

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 13/ 77

Compositional facilities

Parallel composition of futures

future <int > test_when_all () {
future <int > future1 =

async ([]() -> int { return 125; });
future <string > future2 =

async ([]() -> string { return string("hi"); });
auto all_f = when_all(future1 , future2);
future <int > result = all_f.then(

[](auto f) -> int {
return do_work(f.get());

});
return result;

}
Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 14/ 77

Dataflow – The new ’async’ (HPX)

• What if one or more arguments to ’async’ are futures themselves?

• Normal behavior: pass futures through to function

• Extended behavior: wait for futures to become ready before invoking the
function:

template <typename F, typename ... Arg >
future <result_of_t <F(Args ...) >>
// requires(is_callable <F(Arg ...) >)
dataflow(F && f, Arg &&... arg);

• If ArgN is a future, then the invocation of F will be delayed

• Non-future arguments are passed through

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 15/ 77

Concepts of Parallelism – Parallel Execution Properties

• The execution restrictions applicable for the work items

• In what sequence the work items have to be executed

• Where the work items should be executed

• The parameters of the execution environment

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 16/ 77

Concepts and Types of Parallelism

Application

Concepts

Execution Policies

Executors Executor Parameters

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 17/ 77

Concepts and Types of Parallelism

Application

Concepts

Execution Policies

Executors Executor Parameters

Restrictions

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 17/ 77

Concepts and Types of Parallelism

Application

Concepts

Execution Policies

Executors Executor Parameters

Restrictions

Sequence, Where
Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 17/ 77

Concepts and Types of Parallelism

Application

Concepts

Execution Policies

Executors Executor Parameters

Restrictions

Sequence, Where

Grain Size

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 17/ 77

Concepts and Types of Parallelism

Application

Concepts

Execution Policies

Executors Executor Parameters

Restrictions

Sequence, Where

Grain Size
Futures, Async, Dataflow

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 17/ 77

Concepts and Types of Parallelism

Application

Concepts

Execution Policies

Executors Executor Parameters

Restrictions

Sequence, Where

Grain Size
Futures, Async, Dataflow

Parallel Algorithms Fork-Join, etc

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 17/ 77

Execution Policies (std)

• Specify execution guarantees (in terms of thread-safety) for executed
parallel tasks:
• sequential_execution_policy: seq

• parallel_execution_policy: par

• parallel_vector_execution_policy: par_vec

• In parallelism TS used for parallel algorithms only

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 18/ 77

Execution Policies (Extensions)

• Asynchronous Execution Policies:
• sequential_task_execution_policy: seq(task)

• parallel_task_execution_policy: par(task)

• In both cases the formerly synchronous functions return a future<R>

• Instruct the parallel construct to be executed asynchronously

• Allows integration with asynchronous control flow

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 19/ 77

Executors

• Executor are objects responsible for
• Creating execution agents on which work is performed (N4466)

• In N4466 this is limited to parallel algorithms, here much broader use

• Abstraction of the (potentially platform-specific) mechanisms for launching
work

• Responsible for defining the Where and How of the execution of tasks

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 20/ 77

Executors

• Executors must implement one function:
async_execute(F&& f, Args&&... args)

• Invocation of executors happens through executor_traits which
exposes (emulates) additional functionality:

executor_traits <my_executor_type >::
execute(

my_executor ,
[](size_t i){ // perform task i }, n)
;

• Four modes of invocation: single async, single sync, bulk async and bulk
sync

• The async calls return a future

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 21/ 77

Executor Examples

• sequential_executor, parallel_executor:
• Default executors corresponding to par, seq

• this_thread_executor
• thread_pool_executor

• Specify core(s) to run on (NUMA aware)

• distribution_policy_executor
• Use one of HPX’s (distributed) distribution policies, specify node(s) to run on

• cuda::default_executor
• Use for running things on GPU

• Etc.

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 22/ 77

Execution Parameters

Allows to control the grain size of work
• i.e. amount of iterations of a parallel for_each run on the same thread

• Similar to OpenMP scheduling policies: static, guided, dynamic

• Much more fine control

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 23/ 77

Rebind Execution Policies

Execution policies have associated default executor and default executor
parameters

• par: parallel executor, static chunk size
• seq: sequential executor, no chunking
• Rebind executor and executor parameters

numa_executor exec;
// rebind only executor
auto policy1 = par.on(exec);
static_chunk_size param;

// rebind only executor parameter
auto policy2 = par.with(param);
// rebind both
auto policy3 = par.on(exec).with(param);

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 24/ 77

Parallel Algorithms

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 25/ 77

Parallel Algorithms

std::vector <int > v = { 1, 2, 3, 4, 5, 6 };
parallel :: transform(

parallel ::par, begin(v), end(v),
[](int i) -> int {

return i + 1;
});

// prints: 2,3,4,5,6,7,
for (int i : v) std::cout << i << ",";

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 26/ 77

Parallel Algorithms

// uses default executor: par
std::vector <double > d = { ... };
parallel ::fill(par , begin(d), end(d), 0.0);
// rebind par to user -defined executor
my_executor my_exec = ...;

parallel ::fill(par.on(my_exec),
begin(d), end(d), 0.0);

// rebind par to user -defined executor and user
// defined executor parameters
my_params my_par = ...
parallel ::fill(par.on(my_exec).with(my_par),

begin(d), end(d), 0.0);
Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 27/ 77

Extending Parallel Algorithms

Sean Parent: C++ Seasoning, Going Native 2013

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 28/ 77

Extending Parallel Algorithms

template <typename BiIter , typename Pred >
pair <BiIter , BiIter > gather(BiIter f, BiIter l,
BiIter p, Pred pred)

{
BiIter it1 = stable_partition(f, p, not1(pred));
BiIter it2 = stable_partition(p, l, pred);
return make_pair(it1 , it2);

}

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 29/ 77

Extending Parallel Algorithms

template <typename BiIter , typename Pred >
future <pair <BiIter , BiIter >> gather_async(BiIter f,

BiIter l, BiIter p, Pred pred)
{

future <BiIter > f1 =
parallel :: stable_partition(par(task), f, p,
not1(pred));

future <BiIter > f2 =
parallel :: stable_partition(par(task), p, l,
pred);

return dataflow(
unwrapped ([](BiIter r1, BiIter r2) { return
make_pair(r1, r2); }),
f1, f2);

}Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 30/ 77

Extending Parallel Algorithms (await: P0057R2)

template <typename BiIter , typename Pred >
future <pair <BiIter , BiIter >> gather_async(BiIter
f, BiIter l, BiIter p, Pred pred)

{
future <BiIter > f1 =

parallel :: stable_partition(par(task), f, p,
not1(pred));

future <BiIter > f2 =
parallel :: stable_partition(par(task), p, l,
pred);

return make_pair(await f1, await f2);
}

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 31/ 77

More Information

• https://github.com/STEllAR-GROUP/hpx

• http://stellar-group.org

• http://www.open-std.org/jtc1/sc22/wg21/docs/papers

• https://isocpp.org/std/the-standard

• hpx-users@stellar.cct.lsu.edu

• #STE||AR @ irc.freenode.org

Collaborations:

• FET-HPC (H2020): AllScale (https://allscale.eu)

• NSF: STORM (http://storm.stellar-group.org)

• DOE: Part of X-Stack

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 32/ 77

What is HPX – A recap

• Solidly based on a theoretical foundation – a well defined, new execution
model (ParalleX)

• Exposes a coherent and uniform, standards-oriented API for ease of
programming parallel and distributed applications.
• Enables to write fully asynchronous code using hundreds of millions of threads.

• Provides unified syntax and semantics for local and remote operations.

• Developed to run at any scale

• Compliant C++ Standard implementation (and more)

• Open Source: Published under the Boost Software License

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 34/ 77

What is HPX – A recap

HPX represents an innovative mixture of

• A global system-wide address space (AGAS - Active Global Address
Space)

• Fine grain parallelism and lightweight synchronization

• Combined with implicit, work queue based, message driven computation

• Full semantic equivalence of local and remote execution, and

• Explicit support for hardware accelerators (through percolation)

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 35/ 77

HPX – The programming model

Memory

Locality 0

Memory

Locality 1

Memory

Locality i

Memory

Locality N-1

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 36/ 77

HPX – The programming model

Global Address Space

Memory

Locality 0

Memory

Locality 1

Memory

Locality i

Memory

Locality N-1

Parcelport

Active Global Address Space (AGAS) Service

Thread-
Scheduler

Thread-
Scheduler

Thread-
Scheduler

Thread-
Scheduler

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 36/ 77

HPX – The programming model

Global Address Space

Memory

Locality 0

Memory

Locality 1

Memory

Locality i

Memory

Locality N-1

Parcelport

Active Global Address Space (AGAS) Service

Thread-
Scheduler

Thread-
Scheduler

Thread-
Scheduler

Thread-
Scheduler

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 36/ 77

HPX – The programming model

Global Address Space

Memory

Locality 0

Memory

Locality 1

Memory

Locality i

Memory

Locality N-1

Parcelport

Active Global Address Space (AGAS) Service

Thread-
Scheduler

Thread-
Scheduler

Thread-
Scheduler

Thread-
Scheduler

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

future <id_type > id =
new_ <Component >(locality , ...);

future <R> result =
async(id.get(), action , ...);

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 36/ 77

HPX – The programming model

Locality 0 Locality 1 Locality i Locality N-1

Parcelport

Active Global Address Space (AGAS) Service

Thread-
Scheduler

Thread-
Scheduler

Thread-
Scheduler

Thread-
Scheduler

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 36/ 77

HPX 101 – API Overview

HPX

C++ Standard Library

C++

R f(p...) Synchronous Asynchronous Fire & Forget
(returns R) (returns future<R>) (returns void)

Functions f(p...) async(f, p...) apply(f, p...)
(direct)

Functions bind(f, p...)(...) async(bind(f, p...), ...) apply(bind(f, p...), ...)
(lazy)

Actions HPX_ACTION(f, a) HPX_ACTION(f, a) HPX_ACTION(f, a)
(direct) a()(id, p...) async(a(), id, p...) apply(a(), id, p...)

Actions HPX_ACTION(f, a) HPX_ACTION(f, a) HPX_ACTION(f, a)
(lazy) bind(a(), id, p...)

(...)
async(bind(a(), id, p...),
...)

apply(bind(a(), id, p...),
...)

In Addition: dataflow(func, f1, f2);

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 37/ 77

HPX 101 – Example

void hello_world(std:: string msg)
{ std::cout << msg << ’\n’; }

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 38/ 77

HPX 101 – Example

void hello_world(std:: string msg)
{ std::cout << msg << ’\n’; }

// Asynchronously call hello_world: Returns a
future

hpx::future <void > f1
= hpx::async(hello_world , "Hello HPX!");

// Asynchronously call hello_world: Fire &
forget

hpx::apply(hello_world , "Forget me not!");

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 38/ 77

HPX 101 – Example

void hello_world(std:: string msg)
{ std::cout << msg << ’\n’; }

// Register hello_world as an action
HPX_PLAIN_ACTION(hello_world);

// Asynchronously call hello_world_action
hpx::future <void > f2

= hpx::async(hello_world_action , hpx::
find_here (), "Hello HPX!");

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 38/ 77

HPX 101 – Future Composition
// Attach a Continuation to a future
future <R> ff = ...;
ff.then ([](future <R> f){ do_work(f.get()) });

// All input futures become ready
hpx:: when_all (...);

// N of the input futures become ready
hpx:: when_some (...);

// One of the input futures become ready
hpx:: when_any (...);

// Asynchronously call f after inputs are ready
hpx::future <void > f3

= dataflow(f, ...);
Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 39/ 77

Fibonacci – serial

int fib(int n)
{

if (n < 2) return n;
return fib(n-1) + fib(n-2);

}

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 40/ 77

Fibonacci – parallel

int fib(int n)
{

if (n < 2) return n;

future <int > fib1 = hpx::async(fib , n-1);
future <int > fib2 = hpx::async(fib , n-2);
return fib1.get() + fib2.get();

}

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 41/ 77

Fibonacci – parallel, take 2
future <int > fib(int n)
{

if(n < 2)
return hpx:: make_ready_future(n);

if(n < 10)
return hpx:: make_ready_future(fib_serial(n));

future <int > fib1 = hpx::async(fib , n-1);
future <int > fib2 = hpx::async(fib , n-2);
return

dataflow(unwrapped ([](int f1 , int f2){
return f1 + f2;

}), fib1 , fib2);
}

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 42/ 77

Fibonacci – parallel, take 3

future <int > fib(int n)
{

if(n < 2)
return hpx:: make_ready_future(n);

if(n < 10)
return hpx:: make_ready_future(fib_serial(n)
);

future <int > fib1 = hpx::async(fib , n-1);
future <int > fib2 = hpx::async(fib , n-2);
return await fib1 + await fib2;

}

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 43/ 77

Loop parallelization

// Serial version

int lo = 1;
int hi = 1000;
auto range

= boost:: irange(lo, hi);
for(int i : range)
{

do_work(i);
}

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 44/ 77

Loop parallelization

// Serial version

int lo = 1;
int hi = 1000;
auto range

= boost:: irange(lo
, hi);

for(int i : range)
{

do_work(i);
}

// Parallel version

int lo = 1;
int hi = 1000;
auto range

= boost:: irange(lo, hi)
;

for_each(
par , begin(range), end(
range),

[](int i) {
do_work(i);

});
Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 45/ 77

Loop parallelization
// Serial version

int lo = 1;
int hi = 1000;
auto range

= boost:: irange(lo
, hi);

for(int i : range)
{

do_work(i);
}

// Task parallel version

int lo = 1;
int hi = 1000;
auto range

= boost:: irange(lo, hi);
future <void > f = for_each(

par(task), begin(range), end
(range),

[](int i) {
do_work(i);

});
other_expensive_work ();
// Wait for loop to finish:
f.wait();

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 46/ 77

SAXPY routine with data locality

• a[i] = b[i] ∗ x + c[i], for i from 0 to N − 1

• Using parallel algorithms

• Explicit Control over data locality

• No raw Loops

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 47/ 77

SAXPY routine with data locality

Complete serial version:

std::vector <double > a = ...;
std::vector <double > b = ...;
std::vector <double > c = ...;
double x = ...;

std:: transform(b.begin (), b.end(),
c.begin(), c.end(), a.begin(),
[x](double bb, double cc)
{

return bb * x + cc;
});

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 48/ 77

SAXPY routine with data locality

Parallel version, no data locality:

std::vector <double > a = ...;
std::vector <double > b = ...;
std::vector <double > c = ...;
double x = ...;

parallel :: transform(parallel ::par ,
b.begin(), b.end(),
c.begin(), c.end(), a.begin(),
[x](double bb, double cc)
{

return bb * x + cc;
});

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 49/ 77

SAXPY routine

Parallel version, no data locality:

std::vector <hpx:: compute ::host::target > target =
hpx:: compute ::host:: get_numa_domains ();

hpx:: compute ::host:: block_allocator <double > alloc(
targets);

hpx:: compute ::vector <double , block_allocator <double
>> a(..., alloc);

hpx:: compute ::vector <double , block_allocator <double
>> b(..., alloc);

hpx:: compute ::vector <double , block_allocator <double
>> c(..., alloc);

double x = ...;

hpx:: compute ::host:: block_executor <> numa_executor(
Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 51/ 77

SAXPY routine

Parallel version, running on the GPU:

hpx:: compute ::cuda:: target target = hpx:: compute ::
cuda:: get_default_device ();

hpx:: compute ::host:: cuda_allocator <double > alloc(
target);

hpx:: compute ::vector <double , block_allocator <double
>> a(..., alloc);

hpx:: compute ::vector <double , block_allocator <double
>> b(..., alloc);

hpx:: compute ::vector <double , block_allocator <double
>> c(..., alloc);

double x = ...;

hpx:: compute ::host:: cuda_executor executor(target);
Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 52/ 77

More on HPX GPU support

• Executors to modify behavior of how the warps are scheduled

• Executor Parameters to modify chunking (partitioning) of parallel work

• Dynamic parallelism: hpx::parallel::sort(....);
hpx::async(cuda_exec, [&]()

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 53/ 77

More on HPX data locality

• The goal is to be able to expose high level support for all kinds of memory:

• Scratch Pads

• High Bandwidth Memory (KNL)

• Remote Targets (memory locations)

• Targets are the missing link between where data is executed, and where it
is located

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 54/ 77

Hello Distributed World!

struct hello_world_component;
struct hello_world;

int main()
{

hello_world hw(hpx:: find_here ());

hw.print();
}

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 55/ 77

Components Interface: Writing a component

// Component implementation
struct hello_world_component

: hpx:: components :: component_base <
hello_world_component

>
{

// ...
};

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 56/ 77

Components Interface: Writing a component

// Component implementation
struct hello_world_component

: hpx:: components :: component_base <
hello_world_component

>
{

void print() { std::cout << "Hello World!\n
"; }

// define print_action
HPX_DEFINE_COMPONENT_ACTION(
hello_world_component , print);

};

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 57/ 77

Components Interface: Writing a component

// Component implementation
struct hello_world_component

: hpx:: components :: component_base <
hello_world_component

>
{

// ...
};

// Register component
typedef hpx:: components ::component <

hello_world_component
> hello_world_type;

HPX_REGISTER_MINIMAL_COMPONENT_FACTORY(
hello_world_type , hello_world);

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 58/ 77

Components Interface: Writing a component

// Component implementation
struct hello_world_component

: hpx:: components :: component_base <
hello_world_component

>
{

// ...
};

// Register component ...

// Register action
HPX_REGISTER_ACTION(print_action);

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 59/ 77

Components Interface: Writing a component

struct hello_world_component;

// Client implementation
struct hello_world

: hpx:: components :: client_base <hello_world ,
hello_world_component >

{
// ...

};

int main()
{

// ...
}

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 60/ 77

Components Interface: Writing a component

struct hello_world_component;

// Client implementation
struct hello_world

: hpx:: components :: client_base <hello_world ,
hello_world_component >

{
typedef

hpx:: components :: client_base <
hello_world , hello_world_component >

base_type;

hello_world(hpx:: id_type where)
: base_type(

hpx::new_ <hello_world_component >(
where)

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 61/ 77

Components Interface: Writing a component

struct hello_world_component;

// Client implementation
struct hello_world

: hpx:: components :: client_base <hello_world ,
hello_world_component >

{
// base_type

hello_world(hpx:: id_type where);

hpx::future <void > print()
{

hello_world_component :: print_action act
;

return hpx::async(act , get_gid ());
Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 62/ 77

Components Interface: Writing a component

struct hello_world_component;

// Client implementation
struct hello_world

: hpx:: components :: client_base <hello_world ,
hello_world_component >

{
hello_world(hpx:: id_type where);
hpx::future <void > print();

};

int main()
{

hello_world hw(hpx:: find_here ());
hw.print();

}
Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 63/ 77

Matrix Transpose

B = AT
⇒ =

Inspired by the Intel Parallel Research Kernels
(https://github.com/ParRes/Kernels)

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 64/ 77

Matrix Transpose

std::vector <double > A(order * order);
std::vector <double > B(order * order);

for(std:: size_t i = 0; i < order; ++i)
{

for(std:: size_t j = 0; j < order; ++j)
{

B[i + order * j] = A[j + order * i];
}

}

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 65/ 77

Example: Matrix Transpose

std::vector <double > A(order * order);
std::vector <double > B(order * order);

auto range = irange(0, order);
// parallel for
for_each(par , begin(range), end(range),

[&](std:: size_t i)
{

for(std:: size_t j = 0; j < order; ++j)
{

B[i + order * j] = A[j + order * i];
}

}
);

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 66/ 77

Example: Matrix Transpose

std:: size_t my_id = hpx:: get_locality_id ();
std:: size_t num_blocks = hpx::
get_num_localities ().get();

std:: size_t block_order = order / num_blocks;
std::vector <block > A(num_blocks);
std::vector <block > B(num_blocks);

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 67/ 77

Example: Matrix Transpose

for(std:: size_t b = 0; b < num_blocks; ++b) {
if(b == my_id) {

A[b] = block(block_order * order);
hpx:: register_id_with_basename("A", get_gid
(), b);

B[b] = block(block_order * order);
hpx:: register_id_with_basename("B", get_gid
(), b);

}
else {

A[b] = hpx:: find_id_from_basename("A", b);
B[b] = hpx:: find_id_from_basename("B", b);

}
}

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 68/ 77

Example: Matrix Transpose

std::vector <hpx::future <void >> phases(
num_blocks);

auto range = irange(0, num_blocks);
for_each(par , begin(range), end(range),

[&](std:: size_t phase)
{

std:: size_t block_size = block_order *
block_order;

phases[b] = hpx::lcos:: dataflow(
transpose ,
A[phase]. get_sub_block(my_id * block_size
, block_size),

B[my_id]. get_sub_block(phase * block_size
, block_size)

);
});

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 69/ 77

Example: Matrix Transpose

void transpose(hpx::future <sub_block > Af, hpx::
future <sub_block > Bf)

{
sub_block A = Af.get();
sub_block B = Bf.get();
for(std:: size_t i = 0; i < block_order; ++i)
{

for(std:: size_t j = 0; j < block_order; ++j
)

{
B[i + block_order * j] = A[j +

block_order * i];
}

}
}Massively Parallel Task-Based Programming with HPX

23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 70/ 77

Example: Matrix Transpose

struct block_component
: hpx:: components :: component_base <

block_component >
{

block_component () {}
block_component(std:: size_t size)

: data_(size) {}
sub_block get_sub_block(std:: size_t offset ,
std:: size_t size)

{
return sub_block (&data_[offset], size);

}
HPX_DEFINE_COMPONENT_ACTION(block_component ,
get_sub_block);

std::vector <double > data_;
};

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 71/ 77

Matrix Transpose

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12

Da
ta

 tr
an

sf
er

 ra
te

 [G
B/

s]

Number of cores per NUMA domain

Matrix Transpose (SMP, 24kx24k Matrices)

HPX (1 NUMA Domain)
HPX (2 NUMA Domains)
OMP (1 NUMA Domain)
OMP (2 NUMA Domains)

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 72/ 77

Matrix Transpose

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50 60

Da
ta

 tr
an

sf
er

 ra
te

 [G
B/

s]

Number of cores

Matrix Transpose (Xeon/Phi, 24kx24k matrices)

HPX (4 PUs per core) OMP (4 PUs per core)

HPX (2 PUs per core) OMP (2 PUs per core)

HPX (1 PUs per core) OMP (1 PUs per core)

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 73/ 77

Hands-On Examples

• quicksort

• Matrix Multiplication

• Heat diffusion

• Numerical integrator

• To be found at git@github.com:sithhell/LoOPS_Examples.git

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 74/ 77

Conclusions

• Higher-level parallelization abstractions in C++:
• uniform, versatile, and generic

• All of this is enabled by use of modern C++ facilities

• Runtime system (fine-grain, task-based schedulers)

• Performant, portable implementation

• Asynchronous task based programming to efficiently express parallelism

• Seamless extensions for distributed computing

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 75/ 77

Parallelism is here to stay!

• Massive Parallel Hardware is already part of our daily lives!

• Parallelism is observable everywhere:
⇒ IoT: Massive amount devices existing in parallel

⇒ Embedded: Meet massively parallel energy-aware systems (Embedded GPUs,

Epiphany, DSPs, FPGAs)

⇒ Automotive: Massive amount of parallel sensor data to process

• We all need solutions on how to deal with this, efficiently and pragmatically

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 76/ 77

More Information

• https://github.com/STEllAR-GROUP/hpx

• http://stellar-group.org

• http://www.open-std.org/jtc1/sc22/wg21/docs/papers

• https://isocpp.org/std/the-standard

• hpx-users@stellar.cct.lsu.edu

• #STE||AR @ irc.freenode.org

Collaborations:

• FET-HPC (H2020): AllScale (https://allscale.eu)

• NSF: STORM (http://storm.stellar-group.org)

• DOE: Part of X-Stack

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 77/ 77

