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State of the Art

• Modern architectures impose massive challenges on programmability in
the context of performance portability
• Massive increase in on-node parallelism

• Deep memory hierarchies

• Only portable parallelization solution for C++ programmers (today):
OpenMP and MPI
• Hugely successful for years

• Widely used and supported

• Simple use for simple use cases

• Very portable

• Highly optimized
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The C++ Standard

• C++11 introduced lower level abstractions
• std::thread, std::mutex, std::future, etc.

• Fairly limited (low level), more is needed

• C++ needs stronger support for higher-level parallelism

• New standard: C++17:
• Parallel versions of STL algorithms (P0024R2)

• Several proposals to the Standardization Committee are accepted or
under consideration
• Technical Specification: Concurrency (N4577)

• Other proposals: Coroutines (P0057R2), task blocks (N4411), executors

(P0058R1)
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The C++ Standard – Our Vision

Currently there is no overarching vision related to higher-level parallelism

• Goal is to standardize a ‘big story’ by 2020

• No need for OpenMP, OpenACC, OpenCL, etc.

• This tutorial tries to show results of our take on this
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HPX – A general purpose parallel Runtime System

• Solidly based on a theoretical foundation – a well defined, new execution
model (ParalleX)

• Exposes a coherent and uniform, standards-oriented API for ease of
programming parallel and distributed applications.
• Enables to write fully asynchronous code using hundreds of millions of threads.

• Provides unified syntax and semantics for local and remote operations.

• Developed to run at any scale

• Compliant C++ Standard implementation (and more)

• Open Source: Published under the Boost Software License
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HPX – A general purpose parallel Runtime System

HPX represents an innovative mixture of

• A global system-wide address space (AGAS - Active Global Address
Space)

• Fine grain parallelism and lightweight synchronization

• Combined with implicit, work queue based, message driven computation

• Full semantic equivalence of local and remote execution, and

• Explicit support for hardware accelerators (through percolation)
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What is a (the) future

A future is an object representing a result which has not been calculated yet

• Enables transparent
synchronization with producer

• Hides notion of dealing with threads

• Makes asynchrony manageable

• Allows for composition of several
asynchronous operations

• Turns concurrency into parallelism
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What is a (the) future

Many ways to get hold of a future, simplest way is to use (std) async:

int universal_answer () { return 42; }
void deep_thought () {

future <int > promised_answer
= async(& universal_answer);

// do other things for 7.5 million years
cout << promised_answer.get() << endl;
// prints 42, eventually

}
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Compositional facilities

Sequential composition of futures:

future <string > make_string () {
future <int > f1 =

async ([]() -> int { return 123; });
future <string > f2 = f1.then(

[](future <int > f) -> string
{

// here .get() won’t block
return to_string(f.get());

});
return f2;

}
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Compositional facilities

Parallel composition of futures

future <int > test_when_all () {
future <int > future1 =

async ([]() -> int { return 125; });
future <string > future2 =

async ([]() -> string { return string("hi"); });
auto all_f = when_all(future1 , future2);
future <int > result = all_f.then(

[]( auto f) -> int {
return do_work(f.get());

});
return result;

}
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Dataflow – The new ’async’ (HPX)

• What if one or more arguments to ’async’ are futures themselves?

• Normal behavior: pass futures through to function

• Extended behavior: wait for futures to become ready before invoking the
function:

template <typename F, typename ... Arg >
future <result_of_t <F(Args ...) >>
// requires(is_callable <F(Arg ...) >)
dataflow(F && f, Arg &&... arg);

• If ArgN is a future, then the invocation of F will be delayed

• Non-future arguments are passed through
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Concepts of Parallelism – Parallel Execution Properties

• The execution restrictions applicable for the work items

• In what sequence the work items have to be executed

• Where the work items should be executed

• The parameters of the execution environment
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Execution Policies (std)

• Specify execution guarantees (in terms of thread-safety) for executed
parallel tasks:
• sequential_execution_policy: seq

• parallel_execution_policy: par

• parallel_vector_execution_policy: par_vec

• In parallelism TS used for parallel algorithms only
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Execution Policies (Extensions)

• Asynchronous Execution Policies:
• sequential_task_execution_policy: seq(task)

• parallel_task_execution_policy: par(task)

• In both cases the formerly synchronous functions return a future<R>

• Instruct the parallel construct to be executed asynchronously

• Allows integration with asynchronous control flow
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Executors

• Executor are objects responsible for
• Creating execution agents on which work is performed (N4466)

• In N4466 this is limited to parallel algorithms, here much broader use

• Abstraction of the (potentially platform-specific) mechanisms for launching
work

• Responsible for defining the Where and How of the execution of tasks
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Executors

• Executors must implement one function:
async_execute(F&& f, Args&&... args)

• Invocation of executors happens through executor_traits which
exposes (emulates) additional functionality:

executor_traits <my_executor_type >::
execute(

my_executor ,
[]( size_t i){ // perform task i }, n)
;

• Four modes of invocation: single async, single sync, bulk async and bulk
sync

• The async calls return a future

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 21/ 77



Executor Examples

• sequential_executor, parallel_executor:
• Default executors corresponding to par, seq

• this_thread_executor
• thread_pool_executor

• Specify core(s) to run on (NUMA aware)

• distribution_policy_executor
• Use one of HPX’s (distributed) distribution policies, specify node(s) to run on

• cuda::default_executor
• Use for running things on GPU

• Etc.

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 22/ 77



Execution Parameters

Allows to control the grain size of work
• i.e. amount of iterations of a parallel for_each run on the same thread

• Similar to OpenMP scheduling policies: static, guided, dynamic

• Much more fine control
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Rebind Execution Policies

Execution policies have associated default executor and default executor
parameters

• par: parallel executor, static chunk size
• seq: sequential executor, no chunking
• Rebind executor and executor parameters

numa_executor exec;
// rebind only executor
auto policy1 = par.on(exec);
static_chunk_size param;

// rebind only executor parameter
auto policy2 = par.with(param);
// rebind both
auto policy3 = par.on(exec).with(param);
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Parallel Algorithms
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Parallel Algorithms

std::vector <int > v = { 1, 2, 3, 4, 5, 6 };
parallel :: transform(

parallel ::par, begin(v), end(v),
[](int i) -> int {

return i + 1;
});

// prints: 2,3,4,5,6,7,
for (int i : v) std::cout << i << ",";
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Parallel Algorithms

// uses default executor: par
std::vector <double > d = { ... };
parallel ::fill(par , begin(d), end(d), 0.0);
// rebind par to user -defined executor
my_executor my_exec = ...;

parallel ::fill(par.on(my_exec),
begin(d), end(d), 0.0);

// rebind par to user -defined executor and user
// defined executor parameters
my_params my_par = ...
parallel ::fill(par.on(my_exec).with(my_par),

begin(d), end(d), 0.0);
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Extending Parallel Algorithms

Sean Parent: C++ Seasoning, Going Native 2013
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Extending Parallel Algorithms

template <typename BiIter , typename Pred >
pair <BiIter , BiIter > gather(BiIter f, BiIter l,
BiIter p, Pred pred)

{
BiIter it1 = stable_partition(f, p, not1(pred));
BiIter it2 = stable_partition(p, l, pred);
return make_pair(it1 , it2);

}
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Extending Parallel Algorithms

template <typename BiIter , typename Pred >
future <pair <BiIter , BiIter >> gather_async(BiIter f,

BiIter l, BiIter p, Pred pred)
{

future <BiIter > f1 =
parallel :: stable_partition(par(task), f, p,
not1(pred));

future <BiIter > f2 =
parallel :: stable_partition(par(task), p, l,
pred);

return dataflow(
unwrapped ([]( BiIter r1, BiIter r2) { return
make_pair(r1, r2); }),
f1, f2);
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Extending Parallel Algorithms (await: P0057R2)

template <typename BiIter , typename Pred >
future <pair <BiIter , BiIter >> gather_async(BiIter
f, BiIter l, BiIter p, Pred pred)

{
future <BiIter > f1 =

parallel :: stable_partition(par(task), f, p,
not1(pred));

future <BiIter > f2 =
parallel :: stable_partition(par(task), p, l,
pred);

return make_pair(await f1, await f2);
}

Massively Parallel Task-Based Programming with HPX
23.05.2016 | Thomas Heller | Computer Architecture – Department of Computer Science 31/ 77



More Information

• https://github.com/STEllAR-GROUP/hpx

• http://stellar-group.org

• http://www.open-std.org/jtc1/sc22/wg21/docs/papers

• https://isocpp.org/std/the-standard

• hpx-users@stellar.cct.lsu.edu

• #STE||AR @ irc.freenode.org

Collaborations:

• FET-HPC (H2020): AllScale (https://allscale.eu)

• NSF: STORM (http://storm.stellar-group.org)

• DOE: Part of X-Stack
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What is HPX – A recap

• Solidly based on a theoretical foundation – a well defined, new execution
model (ParalleX)

• Exposes a coherent and uniform, standards-oriented API for ease of
programming parallel and distributed applications.
• Enables to write fully asynchronous code using hundreds of millions of threads.

• Provides unified syntax and semantics for local and remote operations.

• Developed to run at any scale

• Compliant C++ Standard implementation (and more)

• Open Source: Published under the Boost Software License
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What is HPX – A recap

HPX represents an innovative mixture of

• A global system-wide address space (AGAS - Active Global Address
Space)

• Fine grain parallelism and lightweight synchronization

• Combined with implicit, work queue based, message driven computation

• Full semantic equivalence of local and remote execution, and

• Explicit support for hardware accelerators (through percolation)
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HPX – The programming model

Memory

Locality 0
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future <id_type > id =
new_ <Component >(locality , ...);

future <R> result =
async(id.get(), action , ...);
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HPX – The programming model
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HPX 101 – API Overview

HPX

C++ Standard Library

C++

R f(p...) Synchronous Asynchronous Fire & Forget
(returns R) (returns future<R>) (returns void)

Functions f(p...) async(f, p...) apply(f, p...)
(direct)

Functions bind(f, p...)(...) async(bind(f, p...), ...) apply(bind(f, p...), ...)
(lazy)

Actions HPX_ACTION(f, a) HPX_ACTION(f, a) HPX_ACTION(f, a)
(direct) a()(id, p...) async(a(), id, p...) apply(a(), id, p...)

Actions HPX_ACTION(f, a) HPX_ACTION(f, a) HPX_ACTION(f, a)
(lazy) bind(a(), id, p...)

(...)
async(bind(a(), id, p...),
...)

apply(bind(a(), id, p...),
...)

In Addition: dataflow(func, f1, f2);
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HPX 101 – Example

void hello_world(std:: string msg)
{ std::cout << msg << ’\n’; }
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HPX 101 – Example

void hello_world(std:: string msg)
{ std::cout << msg << ’\n’; }

// Asynchronously call hello_world: Returns a
future

hpx::future <void > f1
= hpx::async(hello_world , "Hello HPX!");

// Asynchronously call hello_world: Fire &
forget

hpx::apply(hello_world , "Forget me not!");
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HPX 101 – Example

void hello_world(std:: string msg)
{ std::cout << msg << ’\n’; }

// Register hello_world as an action
HPX_PLAIN_ACTION(hello_world);

// Asynchronously call hello_world_action
hpx::future <void > f2

= hpx::async(hello_world_action , hpx::
find_here (), "Hello HPX!");
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HPX 101 – Future Composition
// Attach a Continuation to a future
future <R> ff = ...;
ff.then ([]( future <R> f){ do_work(f.get()) });

// All input futures become ready
hpx:: when_all (...);

// N of the input futures become ready
hpx:: when_some (...);

// One of the input futures become ready
hpx:: when_any (...);

// Asynchronously call f after inputs are ready
hpx::future <void > f3

= dataflow(f, ...);
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Fibonacci – serial

int fib(int n)
{

if (n < 2) return n;
return fib(n-1) + fib(n-2);

}
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Fibonacci – parallel

int fib(int n)
{

if (n < 2) return n;

future <int > fib1 = hpx::async(fib , n-1);
future <int > fib2 = hpx::async(fib , n-2);
return fib1.get() + fib2.get();

}
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Fibonacci – parallel, take 2
future <int > fib(int n)
{

if(n < 2)
return hpx:: make_ready_future(n);

if(n < 10)
return hpx:: make_ready_future(fib_serial(n));

future <int > fib1 = hpx::async(fib , n-1);
future <int > fib2 = hpx::async(fib , n-2);
return

dataflow(unwrapped ([]( int f1 , int f2){
return f1 + f2;

}), fib1 , fib2);
}
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Fibonacci – parallel, take 3

future <int > fib(int n)
{

if(n < 2)
return hpx:: make_ready_future(n);

if(n < 10)
return hpx:: make_ready_future(fib_serial(n)
);

future <int > fib1 = hpx::async(fib , n-1);
future <int > fib2 = hpx::async(fib , n-2);
return await fib1 + await fib2;

}
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Loop parallelization

// Serial version

int lo = 1;
int hi = 1000;
auto range

= boost:: irange(lo, hi);
for(int i : range)
{

do_work(i);
}
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Loop parallelization

// Serial version

int lo = 1;
int hi = 1000;
auto range

= boost:: irange(lo
, hi);

for(int i : range)
{

do_work(i);
}

// Parallel version

int lo = 1;
int hi = 1000;
auto range

= boost:: irange(lo, hi)
;

for_each(
par , begin(range), end(
range),

[](int i) {
do_work(i);

});
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Loop parallelization
// Serial version

int lo = 1;
int hi = 1000;
auto range

= boost:: irange(lo
, hi);

for(int i : range)
{

do_work(i);
}

// Task parallel version

int lo = 1;
int hi = 1000;
auto range

= boost:: irange(lo, hi);
future <void > f = for_each(

par(task), begin(range), end
(range),

[](int i) {
do_work(i);

});
other_expensive_work ();
// Wait for loop to finish:
f.wait();
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SAXPY routine with data locality

• a[i] = b[i] ∗ x + c[i], for i from 0 to N − 1

• Using parallel algorithms

• Explicit Control over data locality

• No raw Loops
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SAXPY routine with data locality

Complete serial version:

std::vector <double > a = ...;
std::vector <double > b = ...;
std::vector <double > c = ...;
double x = ...;

std:: transform(b.begin (), b.end(),
c.begin(), c.end(), a.begin(),
[x]( double bb, double cc)
{

return bb * x + cc;
});
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SAXPY routine with data locality

Parallel version, no data locality:

std::vector <double > a = ...;
std::vector <double > b = ...;
std::vector <double > c = ...;
double x = ...;

parallel :: transform(parallel ::par ,
b.begin(), b.end(),
c.begin(), c.end(), a.begin(),
[x]( double bb, double cc)
{

return bb * x + cc;
});
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SAXPY routine

Parallel version, no data locality:

std::vector <hpx:: compute ::host::target > target =
hpx:: compute ::host:: get_numa_domains ();

hpx:: compute ::host:: block_allocator <double > alloc(
targets);

hpx:: compute ::vector <double , block_allocator <double
>> a(..., alloc);

hpx:: compute ::vector <double , block_allocator <double
>> b(..., alloc);

hpx:: compute ::vector <double , block_allocator <double
>> c(..., alloc);

double x = ...;

hpx:: compute ::host:: block_executor <> numa_executor(
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SAXPY routine

Parallel version, running on the GPU:

hpx:: compute ::cuda:: target target = hpx:: compute ::
cuda:: get_default_device ();

hpx:: compute ::host:: cuda_allocator <double > alloc(
target);

hpx:: compute ::vector <double , block_allocator <double
>> a(..., alloc);

hpx:: compute ::vector <double , block_allocator <double
>> b(..., alloc);

hpx:: compute ::vector <double , block_allocator <double
>> c(..., alloc);

double x = ...;

hpx:: compute ::host:: cuda_executor executor(target);
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More on HPX GPU support

• Executors to modify behavior of how the warps are scheduled

• Executor Parameters to modify chunking (partitioning) of parallel work

• Dynamic parallelism: hpx::parallel::sort(....);
hpx::async(cuda_exec, [&]()
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More on HPX data locality

• The goal is to be able to expose high level support for all kinds of memory:

• Scratch Pads

• High Bandwidth Memory (KNL)

• Remote Targets (memory locations)

• Targets are the missing link between where data is executed, and where it
is located
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Hello Distributed World!

struct hello_world_component;
struct hello_world;

int main()
{

hello_world hw(hpx:: find_here ());

hw.print();
}
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Components Interface: Writing a component

// Component implementation
struct hello_world_component

: hpx:: components :: component_base <
hello_world_component

>
{

// ...
};
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Components Interface: Writing a component

// Component implementation
struct hello_world_component

: hpx:: components :: component_base <
hello_world_component

>
{

void print() { std::cout << "Hello World!\n
"; }

// define print_action
HPX_DEFINE_COMPONENT_ACTION(
hello_world_component , print);

};
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Components Interface: Writing a component

// Component implementation
struct hello_world_component

: hpx:: components :: component_base <
hello_world_component

>
{

// ...
};

// Register component
typedef hpx:: components ::component <

hello_world_component
> hello_world_type;

HPX_REGISTER_MINIMAL_COMPONENT_FACTORY(
hello_world_type , hello_world);
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Components Interface: Writing a component

// Component implementation
struct hello_world_component

: hpx:: components :: component_base <
hello_world_component

>
{

// ...
};

// Register component ...

// Register action
HPX_REGISTER_ACTION(print_action);
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Components Interface: Writing a component

struct hello_world_component;

// Client implementation
struct hello_world

: hpx:: components :: client_base <hello_world ,
hello_world_component >

{
// ...

};

int main()
{

// ...
}
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Components Interface: Writing a component

struct hello_world_component;

// Client implementation
struct hello_world

: hpx:: components :: client_base <hello_world ,
hello_world_component >

{
typedef

hpx:: components :: client_base <
hello_world , hello_world_component >

base_type;

hello_world(hpx:: id_type where)
: base_type(

hpx::new_ <hello_world_component >(
where)
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Components Interface: Writing a component

struct hello_world_component;

// Client implementation
struct hello_world

: hpx:: components :: client_base <hello_world ,
hello_world_component >

{
// base_type

hello_world(hpx:: id_type where);

hpx::future <void > print()
{

hello_world_component :: print_action act
;

return hpx::async(act , get_gid ());
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Components Interface: Writing a component

struct hello_world_component;

// Client implementation
struct hello_world

: hpx:: components :: client_base <hello_world ,
hello_world_component >

{
hello_world(hpx:: id_type where);
hpx::future <void > print();

};

int main()
{

hello_world hw(hpx:: find_here ());
hw.print();

}
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Matrix Transpose

B = AT
⇒ =

Inspired by the Intel Parallel Research Kernels
(https://github.com/ParRes/Kernels)
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Matrix Transpose

std::vector <double > A(order * order);
std::vector <double > B(order * order);

for(std:: size_t i = 0; i < order; ++i)
{

for(std:: size_t j = 0; j < order; ++j)
{

B[i + order * j] = A[j + order * i];
}

}
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Example: Matrix Transpose

std::vector <double > A(order * order);
std::vector <double > B(order * order);

auto range = irange(0, order);
// parallel for
for_each(par , begin(range), end(range),

[&]( std:: size_t i)
{

for(std:: size_t j = 0; j < order; ++j)
{

B[i + order * j] = A[j + order * i];
}

}
);
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Example: Matrix Transpose

std:: size_t my_id = hpx:: get_locality_id ();
std:: size_t num_blocks = hpx::
get_num_localities ().get();

std:: size_t block_order = order / num_blocks;
std::vector <block > A(num_blocks);
std::vector <block > B(num_blocks);
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Example: Matrix Transpose

for(std:: size_t b = 0; b < num_blocks; ++b) {
if(b == my_id) {

A[b] = block(block_order * order);
hpx:: register_id_with_basename("A", get_gid
(), b);

B[b] = block(block_order * order);
hpx:: register_id_with_basename("B", get_gid
(), b);

}
else {

A[b] = hpx:: find_id_from_basename("A", b);
B[b] = hpx:: find_id_from_basename("B", b);

}
}
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Example: Matrix Transpose

std::vector <hpx::future <void >> phases(
num_blocks);

auto range = irange(0, num_blocks);
for_each(par , begin(range), end(range),

[&]( std:: size_t phase)
{

std:: size_t block_size = block_order *
block_order;

phases[b] = hpx::lcos:: dataflow(
transpose ,
A[phase]. get_sub_block(my_id * block_size
, block_size),

B[my_id]. get_sub_block(phase * block_size
, block_size)

);
});
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Example: Matrix Transpose

void transpose(hpx::future <sub_block > Af, hpx::
future <sub_block > Bf)

{
sub_block A = Af.get();
sub_block B = Bf.get();
for(std:: size_t i = 0; i < block_order; ++i)
{

for(std:: size_t j = 0; j < block_order; ++j
)

{
B[i + block_order * j] = A[j +

block_order * i];
}

}
}Massively Parallel Task-Based Programming with HPX
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Example: Matrix Transpose

struct block_component
: hpx:: components :: component_base <

block_component >
{

block_component () {}
block_component(std:: size_t size)

: data_(size) {}
sub_block get_sub_block(std:: size_t offset ,
std:: size_t size)

{
return sub_block (&data_[offset], size);

}
HPX_DEFINE_COMPONENT_ACTION(block_component ,
get_sub_block);

std::vector <double > data_;
};
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Matrix Transpose
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Matrix Transpose
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Hands-On Examples

• quicksort

• Matrix Multiplication

• Heat diffusion

• Numerical integrator

• To be found at git@github.com:sithhell/LoOPS_Examples.git
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Conclusions

• Higher-level parallelization abstractions in C++:
• uniform, versatile, and generic

• All of this is enabled by use of modern C++ facilities

• Runtime system (fine-grain, task-based schedulers)

• Performant, portable implementation

• Asynchronous task based programming to efficiently express parallelism

• Seamless extensions for distributed computing
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Parallelism is here to stay!

• Massive Parallel Hardware is already part of our daily lives!

• Parallelism is observable everywhere:
⇒ IoT: Massive amount devices existing in parallel

⇒ Embedded: Meet massively parallel energy-aware systems (Embedded GPUs,

Epiphany, DSPs, FPGAs)

⇒ Automotive: Massive amount of parallel sensor data to process

• We all need solutions on how to deal with this, efficiently and pragmatically
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More Information

• https://github.com/STEllAR-GROUP/hpx

• http://stellar-group.org

• http://www.open-std.org/jtc1/sc22/wg21/docs/papers

• https://isocpp.org/std/the-standard

• hpx-users@stellar.cct.lsu.edu

• #STE||AR @ irc.freenode.org

Collaborations:

• FET-HPC (H2020): AllScale (https://allscale.eu)

• NSF: STORM (http://storm.stellar-group.org)

• DOE: Part of X-Stack
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