Calibration with an external star catalog

F. Feinstein, (with help from D. Fouchez) CPPM-Marseille

LSST France meeting, Grenoble
June 8, 2016

LSST calibration stars

Stars must be
non-variable, visible through most filters, abundant:
=> sample of main sequence (MS) stars
not saturating the CCDs: $\boldsymbol{m}_{\mathrm{b}} \mathbf{> 1 6 . 5}$
bright enough to give photometry with few mmag stat. precision per exposure

F too variable, M too faint
=> promising sample: G and K dwarves with $16<m_{b}<20$

Possible uses of Gaia catalog

Gaia will provide a catalogue of $\mathbf{G} \& \mathrm{~K}$ stars identified as nonvariable with precise photometry and color information, up to $m \approx m_{r}=20.5$

Potential uses:
\Rightarrow Fix relative Zero points for different filters (at least $\boldsymbol{g}, \boldsymbol{r}, \mathbf{I}, \mathbf{z}$)
\Rightarrow provide some absolute standards
\Rightarrow verify the whole calibration procedure
\Rightarrow use Gaia stars as starting point for overall calibration χ^{2} fit

Test of the method

Take CFHT-LS images used for the SNLS programme
Process these images with the LSST stack
Filter r, D3 field, 36 CCDs, 4 nights : 24/05 to 02/06/2006

Compare with an "external" catalogue : Betoule et al (2013)
$\Rightarrow 1$ deg field, 3300 stars
\Rightarrow precision : 0.4 mmag at $\mathrm{m}=16$ to 4 mmag at $\mathbf{m}=22$
Use natural mag, so colour/position effects are included
Use stars from $\mathrm{m}=17$ to $\mathrm{m}=18.5$ as reference

Stack calibration done with SDSS catalog

Differences between CFH and LSST

	CFH	LSST	
CCDs	$36 /$ sq. deg.	16/sq. deg.	nr of stars per CCD
exp.	250 s	15 s	effect of rapid changes in
			atmosphere

I use the 6 pix. radius LSST stack photometry, which is less fluctuating than the 17 pix. one.

SNLS uses a larger aperture and averages over many images

CDD alignment

CDD alignment

Dispersion before alignment

RMS = 12 mmag for $m=17$ to 20

Dispersion after alignment

Magnitude dispersion vs color

no effect in \boldsymbol{g} - \boldsymbol{i} at 1 mmag level

Conclusions

Aperture photometry with the stack works.
Corrections of Zero points using bright stars ($m=17$. to 18.5) work.
=> dispersion reduced on all stars ($m=16.6$ to 20)
Corrections of Zero points on 1 night are valid over 4 nights
\Rightarrow repeatability of field stars $=8 \mathbf{~ m m a g}$
\Rightarrow compatible with Regnault 2009
No significant color dependence when using natural magnitudes

Dispersion on mag in 1 exp. $=8 \mathrm{mmag}$: spatial variations ?

Lots of NaN and a few negative fluxes when using 17 pix. aperture

What next?

Use half the SNLS catalog as input for stack
Evaluate precision on the other half

Understand and correct the NaN magnitudes and neg. fluxes

Extend study to other filters

Extend to non-photometric nights

Explore PSF flux measurement

