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StarDICE section n°6.1 of the roadmap
of the calibration working group

Today: 5%. uncertainty on flux calibration —> 3% uncertainty on w
For < 1% on w—> ~1%. on fluxes

Laboratory flux
uncertainties ~0.1%eo

Goal

Use laboratory flux standards for the calibration of SNe la




Proposed metrology chain

Shortest chain, using standards
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Optical formula

Make the calibrated source look like a star geometrically

< pixel size (9um)

We want our telescope to observe: \ typical LED size (500um)
- a small source at finite '/
distance O(100m) smaller AB’ =fx AB/OA\ f~1m
than a pixel ~100m
- Stars of magnitude m=13 t ~ 103/D2hours D ~ 25cm
time needed to gather 106 e- mirror diameter in cm
Newton telescope
Focalxmint /
! B ~250 m
- ~ Artificial source (stable
/ with small size)
Incoming light

Best possible artificial star from the ground



Differences Astrophysical/Artificial
SOUrces

e Source at finite distance:
—> different optical ways We use a newton telescope
—> simplest optics

—> different ghosts it additional optics

* Different atmosphere width:

Star Artificial source
Data model: Data model:
Gadu = | Aa(A) T(A)A(A)S(A)dA Gadu = [ AB(N) T(N)C(N)dA
e S Star SED e C Calibration source SED
o [ telescope transmission o T telescope transmission
@ A atmospheric transmission o A~ 1
@ a aperture correction @ b # a finite d & less diffusion




A stable artificial light source:
DICE

Test source, used at CFHT | | |
reducing dispersion angle

‘. . output dispersion ~2°
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DICE calibration

LEDs flux with intensity calibrated by measuring their flux

in a NIST calibrated photodiode.
(Regnault et al, 2015)

3D row-map of LEDOS
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Telescope

The telescope is a Newton one from LUPM (Laboratoire Univers & Particules
de Montpellier)

- diameter = 25 cm
- focale = 1m fiD =4
—>for an object at 250m : focus at 4mm




Camera

Model : SBIG ST-7XME
Resolution : 765x510 pixels

filter wheel
Peltier cooling
From LUPM

LED head camera SBIG

SBIG ST-7XME and its filter wheel

Test bench characterization:
- Biases (value and readout noise)
- Dark current
- Gain value and stability

- Quantum efficiency
- Filter transmission monochromator



Blases

Bias evolution with temperature and Readout noise evolution with
Peltier power temperature and PeItier power
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Dark mages

X rays study in darks

10’
+ data
— gaussian fit with ¢ =11.3ADU and p=992ADU
AR
108 b
+ + : .
Two different
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o + | L :
. 97.5% - pixels : standards
3 10°
4= + : + :
; | : - — and hot ones
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Energy in pixel (ADU)
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Flat fields

Presence of dusts over the CCD

Almost monochromatic source
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Variance (ADU?)

Gain ~ 2.6 e-/ADU
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Gain very stable!

Variance of a subtraction of two images in
the same conditions (extracted from flat-
fields of different exposure times)

[~ saturation at ~35k ADU —> 90k e-

Stability over 30 hours
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Quantum Efficiency

Quantum efficiency

CCD Quantum efficiency with wavelength
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Filter Transmissions

Transmissions for all filters

1.0
L | Gapin
| ; transmission
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Relative transmissions of given filters

, computed with monochromator
Filter wheel = 5 slots :
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Testing campaign at Observatoire
de Haute Provence

Director : Auguste Le Van Suu

Rooms

T152
(LED head)

Rosace
(Telescope)

OHP site
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Window for control devices wires

X, - of T
L A ‘,} §

- # I e of . 2 20 '\ -
A » 't R N

LED head pointing to the telescope

Beam width at 250m : ~9m

We took series of
images of LEDs with
different filters

1Teld W ela

OHP first light from a LED

=1
el

Easily to align
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Photometry

Series of pictures of a same LED

=

.03

aperture of
10 pixels {
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o = 7%. —> High repeatability exposition time = 0.1 s
—> shutter noise



Our results

We stacked images of the same object with SWarp:

 removing those with mist, bad weather and the saturated ones.
e subtracting a dark taken just before each image
 recentering them to correct movements due to the wind

Stacked images:

’ s 1ITe02 19«00

LED #07 Filter #03 (Green) LED #23 Filter #08 (Blue) 19 Ursa Minor, Filter #03 (Green)

\X /

Same type of object Same filter

C €0 100000 e ™ MEC00 200000 90000 408
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Comparisons

global factor for the LED for both LED and star have ~the same flux

We compared LED #07 and 19 UMi
in green filter

Very similar shapes
+

PSF profile (ADU)

PSF over more than 4 <
orders of magnitude in flux
beyond 15 pixels

We have an artificial star!

To be improved with a better
reduction of the structured
background

o ® 100 1% 200 2

Image of the source convenient scale

J00
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Conclusion

We found a good couple of sites

We created an artificial star (point source with a PSF similar to a
real star

We checked that the photometry is stable

We measured the PSF of our source over 5 orders of magnitude
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Perspectives

Measure the PSF at many wavelengths
Build a source with lower fluxes

Focus automation

Telescope mount automation

Build a shelter

Hope for better weather!
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