Practical implementation of a shear measurement pipeline

-Challenges in the images processing and in the shear methods-

Augustin GUYONNET + Josquin ERRARD

LSST France - LPSC - June 2016

.

Lensing at LPNHE + « Weighing the Giants »+ M2C project (M. Arnaud)

	Astier	16AF026					
		Weighing the f_gas clusters					
		CANADA-FRANCE-HAWAII TELESCOPE					
	Semester : 2016A Abstract The most massive cluste Universe. The gas-to-tot estimate of Omega_b/O	Astier	Weighing the	f_gas clusters	15B	F008	
For the current g	eneration of X-ra	y cluster surve	ys, the u	ncertainty	e Cat. : High-z un	iverse	
in the absolute n uncertainty on th	nass calibration (ne matter power s galaxies. We here propo fgas clusters. Along with	15%) dominate spectrum norm most robust constraints on C currently largest systematic	es the sys alization	stematic σ8. ependent of the assumed content of the stems from	ter content of the rovide an excellen hese yield some o osmological mode om the uncertaintie	t if the I. The es in	
	to 5% precision - a rema parameters from a single <i>Telescopes</i> Telescope CFHT <i>Applicants</i>	total cluster mass estimates. lensing mass estimates for a reduced. Currently, only 12 o lensing data, and only 6 of th galaxies. We here propose to fgas clusters. Along with futu- to 5% precision - a remarkat	By comparing X-ray- but T_{N}	vo proposa ojective is to uncertainty	h high-quality wea Is subr o increa on the	nitted ase th mass	and accepted : ne sample of clusters s calibration.
	Dr Pierre Astier Ludovic Van Waerbeke	parameters from a single ex <i>Telescopes</i> Telescope CFHT	Observing mode QSO Regular	Instrume MegaCan	nts 1		
	Prof. Steven Allen Dominique Boutigny Matthieu Roman	Applicants Name Dr Pierre Astier Ludovic Van Waerbeke	Affiliation CNRS (LPNHE) University of British	Email pierre.astier@in2p3.fr waerbeke@phas.ubc.ca	Country France P Canada	Potential observer	
The goal is to independent a	Contribute by ar analysis chain fo	n or cross-check	Columbia (Physics and Astronomy) ord University ics) 2P3 (CNRS) IE (CNRS)	anja@slac.stanford.edu swa@stanford.edu boutigny@in2p3.fr matthieu.roman@pnhe.in2p3.fr	United States United States France France		
	Pat Kelly	Augustin Guyonnet Jean-Stéphane Ricol Adam Mantz	LPNHE (CNRS) LPSC (CNRS) Kavli Institute for Cosmological Physics	marc.betoule@lpnhe.in2p3.fr auguyonnet@lpnhe.in2p3.fr ricol@lpsc.in2p3.fr amantz@slac.stanford.edu	France France United States		

Amelander Institute for damale@astro.uni.honn.de Germany

Dr Douglas Applegate

Image processing for shear measurement

From the catalogs to the science

 $\theta = \pi/2$

Shear as a cosmological probe : Lensing by clusters of galaxy

$$\gamma_t = -\left(\gamma_1 \cos(2\theta_c) + \gamma_2 \sin(2\theta_c)\right)$$

Weighing the Giants I (1208.0597)

Contours of mass distribution

Ingredients of the images processing

- Remove sensor signatures.

(already discussed last LSST-France meeting)

(already discussed last LSST-France meeting)

- Minimizing the centroid bias (an error δx_0 inflates $gm_{XX} \propto \delta x_0^2$) \rightarrow simult. astro. 3 mas.
- Large statistics \rightarrow Stacking 10 exposures : 19 gal/arcmin² \Rightarrow 34 gal/arcmin².

(already discussed last LSST-France meeting)

- Deconvolution (Know the PSF at the permil level)/shear estimator.
- Background subtraction.

Impact of a background subtraction error

 \sqrt{gmxx}

 \sqrt{gmyy}

10

8

6

flux pixel max. [kADU]

4

 $(\Delta \sigma)/\bar{\sigma}$ [%]

0.000

-0.001

-0.002

-0.003

0

2

Over(-0.2e)/Under(+0.2e)estimation of the 'skylevel'

Shear estimator : the «optimal» Gauss-Laguerre technique

Define galaxy ellipticity via the transformation that restores a « round » galaxy (Berntein & Jarvis 2001) :

As in other technique, the task is to assign some shape e_i to observed galaxy i, then to derive from

it an estimate of the applied lensing shear γ .

observer

The B&J strategy is to find the shear η that when applied to the system θ makes the image appear circular in that coordinate system and declares the galaxy shape to be this shear.

image

η

ξ

ç

lens

source

The virtue of this definition is that the effect of a lensing distortion upon the galaxy shape is completely defined by the multiplication of shear matrices.

Shear estimator : the «optimal» Gauss-Laguerre technique

Decomposition of an image :

$$I(r,\theta) = \sum_{p,q \ge 0} b_{pq} \psi_{pq}^{\sigma}(r,\theta)$$

The Gauss-Laguerre decomposition implement eigenfunctions of the 2-D QHO, expressed as complex functions of 2 integers p, q :

$$\psi_{pq}^{\sigma}(r,\theta) \equiv \frac{(-1)^q}{\sqrt{\pi}\sigma^2} \sqrt{\frac{q!}{p!}} \left(\frac{r}{\sigma}\right)^m e^{im\theta} e^{-r^2/2\sigma^2} L_q^{(m)}(r^2/\sigma^2)$$

The b_{pq} are Gaussian-weighted moments of the intensity image.

$$b_{pq} = \sigma^2 \int d^2 x I(\mathbf{x}) \bar{\psi}_{pq}^{\sigma}(\mathbf{x})$$

The algorithm for measuring object shapes requires

A centroiding condition $b_{10} = 0$ A circularity condition $b_{20} = 0$

and a size matching condition $b_{||} = 0$

These operations + deconvolution are found by manipulating the b_{pq}

Gauss-Laguerre Shear estimator

Shear estimator : the «optimal» Gauss-Laguerre technique

→ Find the least X² and get the b_{pq}
 → The observed, intrinsic and
 PSF weighted coefficients b are related :

$$\rightarrow \eta = \frac{-2\sqrt{2}b_{02}^{int}}{b_{00}^{int} - b_{22}^{int}} \rightarrow e = tanh(\eta)$$

observed galaxy image and reconstructed *intrinsic* shear

- →Gaussian psf convolve with :

 e_{1,gal} = 0.100585, e_{2,gal} = 0.099256

 →Deconvolution :

 e_{1,deconv}=0.100571 e_{2,deconv}= 0.099285
- → [I-4%] syst. err. @ [50-20]S/N(Nakajima & Bernstein 2006)

Shear estimators : Towards permil precision ...

Shear estimator : What we do here is we go from **Object** \rightarrow **Moments** \rightarrow e_i \rightarrow γ

Possible improvement on :

ei : Re-gaussiannization method Elliptical Laguerre expansion (Hirata&Seljak 2003)

 γ : We think : $e_{obs} = e_i + \gamma$. This holds only for e_i , $\gamma \rightarrow 0$. Must go to higher order. Fourier Domain Null Testing (Bernstein 2010) : $e_{obs} = R_1 \gamma + R_3 \gamma^3 + ...$ include R_3 term for 1/1000 accuracy when $\gamma \sim 0.03$.

But the central question is : Does the method really measure gravitational shear ?

We do not know the correct answers because there are no "standard shear" lenses on the sky \rightleftharpoons simulation of artificial galaxy images to calibrate a given **Shear estimator** strategy (see GREAT challenge).

(1) (2)
$$(P(M|Y))$$

(Object \rightarrow Moments $e_i \rightarrow Y$
Model \checkmark

(I) Galaxy population ?

(2) Model (in)dependent ? Assumptions on galaxy profiles (Miller et al 2013). The use of a finite set of weighted moments lead to a bias similar to the use of truncated basis sets. All methods that aim to measure galaxy shapes from noisy, PSF-convolved data have the risk of producing biased results, and choosing a so-called 'model-independent' method does not alleviate this concern. In both approaches, γ is produced from some weighted sum of the e_i (Kochanek 1990; Miralda–Escude 1991; Bonnet & Mellier 1995).

(3) Bayesian Fourier Domain (Bernstein & Armstrong 2014, Bernstein et al. 2015): Skip the estimation of galaxy shape properties. Rely on a high S/N observations of a subset of the survey region to provide an analytic expression for the probability $P(M|\gamma)$

