Object classification in SDSS DR12

Farhang Habibi Reza Ansari & Marc Moniez

LAL

Aim

To automatically separate stars, galaxies and Quasars by using the colour indices in the absence of spectroscopic data.

- ~ 4 million spectra
- ~ 60% galaxies
- ~ 30% stars
- ~ 10% QSOs

4 independent colours + g-magnitudes + their multiplications construct 20 features defining a 5-dimensional hyper parabola in colour-magnitude space.

Black: Stars Red: Galaxies

Results from the classification

- Classification efficiency for the whole sample: 94%
 galaxies: 97%
 stars: 92%
 QSOs: 90%
- Mean size of the galaxies classified wrongly: 0.5 arcsec correctly: 3 arcsec
- Mean magnitude (extinction corrected) of the stars classified wrongly: z = 19 (fainter stars) correctly: z = 17
- Mean redshift of the QSOs classified wrongly: redshift = 2 (further QSOs) correctly: redshift = 1.5

Classification for LSST objects

MW-like galaxies can be resolved by morphology but not for faint galaxies (dwarfs)

Classification for LSST objects

- Generating galaxies at different redshifts from their luminosity function
- Assigning SED to galaxies
- Computing magnitudes and colours
- Assigning angular size to galaxies

Backups

Features from photometric data

Colour indices and magnitudes can be used to classify the celestial objects

Galaxies

Stars

Colour indices as "features" for classification

Supervised Classification

Parameters of the separating curve are derived by the logistic regression method.

Logistic regression (thanks to Andrew Ng)

Cost function to be minimised

 $J(\theta) = -\frac{1}{m} \left[\sum y^{(i)} \log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \right]$

Sigmoid (logistic) function

$$h_{\theta} = \frac{1}{1 - e^{-\theta^T x}}$$

m: total number of objects in the training set i: object's index

 x_i : vector of features of an object

 y_i : object's label, 0 for stars, 1 for galaxies θ : vector of parameters to be fitted

Logistic regression

(thanks to Andrew Ng)

$$h_{\theta}(\vec{x}) = \frac{1}{1 + e^{-(\theta_0 + \theta_1 x_1 + \dots + \theta_n x_n)}}$$

Hyper border surface:
$$\theta_0 + \theta_1 x_1 + \dots + \theta_n x_n = 0$$

The cost function:

$$J = -\frac{1}{m} \sum_{i=1}^{m} [y^{(i)} \log(h_{\theta}(\vec{x}^{(i)})) + (1 - y^{(i)}) \log(1 - h_{\theta}(\vec{x}^{(i)}))]$$

Logistic regression

- We take into account size of objects and 10 colours (c1=u-g, c2=u-r, ...) plus one magnitude (u) and their quadratic function (ci.cj) to have 77 features.
- The separation region is constrained by a 12 dimension hyper parabola defined by 79 parameters.
- From ~670,000 stars, ~1,100,000 galaxies and 250,000 QSOs we randomly put 20000 form each object into the training sample.

Wrongly and correctly classified galaxies

Wrongly and correctly classified stars

Wrongly and correctly classified QSOs

Comparison with Random Forest classifier

 Classification efficiency: whole sample: 96% galaxies: 97% stars: 94% QSOs: 91%

A basic classifier works nicely so far!

Classification for LSST objects

Including fainter stars to the sample

Computing the contamination of the photo-z sample

Conclusions & Perspectives

- in SDSS DR12, ~ 94% of galaxies, stars and QSOs can be correctly separated using their colours and size by implementing Logistic Regression.
- 3% of galaxies (small angular size) can be mis-classified as point-like sources.
- 8% of (faint) stars can be mis-classified as galaxy-QSO.
- 10% of (further) QSOs can be mis-classified as galaxy-star.
- Classifying the simulated objects according to the LSST observation ability (higher redshifts and fainter objects).
- What is the effect of misclassified objects on photo-z determination of galaxies?