Charting Terra Incognita of Exotic Nuclei

S Franchoo

A Drouart, C Gaulard, A Lopez-Martens, E Minaya Ramirez, S Roccia, B Sulignano, D Yordanov et al.

IPN Orsay CSNSM Orsay Irfu/SPhN Saclay

Beta decay cannot rule out the existence of isomers or alternative spin assignments, leaving doubt on the level scheme that is obtained. Only the measurement of masses, spins and moments can solve this (m, J^{π} , δr^2 , μ , Q)

Uniqueness of Alto at Orsay

low-energy neutron-rich nuclear physics with reduced isobaric contamination

- photofission (cold process, little excitation energy)
- mass separation (A selection) & laser ionisation (Z selection)

1. Polarex

Low-Temperature Nuclear Orientation

low temperature external magnetic field (15 mK, 1.5 T) implantation in ferromagnetic host (10-100 T internal field)

Uniqueness

- coupling to nuclides from Alto
- unlike Isolde, beam line connected from below more detectors around the sample accurate spatial anisotropy of emitted radiation

Off-line at CSNSM

- renovation of cryostat
- reached 8.8±0.1 mK

Fusion-evaporation ²H + ⁵⁶Fe at Alto tandem

- ^{56,58}Co: magnetic moment
- 56-58Co: M1+E2 multipolarity mixing

A Etilé, to be published

1. Polarex

Magnetic properties close to ¹³²Sn

- shell-model unable to reproduce antimony
- signature for diffuse nuclear surface?
- predict same effect for ^{136,137}I
- obtain single-particle orbitals from characteristic magnetic moments of Sb, I

J. Shergur et al., PRC 65, 034313 (2002)

Versatility of Polarex

- measure magnetic moment of ¹³⁷I
- followed by y-decay in ¹³⁷Xe
 parity admixtures
- and β-delayed neutron emission
 - > neutron barrier penetration

1. Polarex

Polarex at CSNSM

Polarex platform at Alto

1.1 move Polarex to Alto	H. Silvin	Polarex installed	31.12.16
1.2 vacuum and cryogenics tests	S. Roccia		
1.3 off-line physics runs	C. Gaulard		
1.4 beam-line design	A. Hüe	all drawings	31.12.17
1.5 beam-line construction	C. Planat	beam line	30.6.18
1.6 on-line experiments	C. Gaulard		

Protons

High-precision mass measurements

High-precision mass measurements

In-trap life-time measurements of heavy nuclei

100

distance travelled depends on life-time of initial state: \sim 50 µm for 100 ps use magnification by field of trap to reconstruct position of α and y decay

towards superheavy α emitters at S3

2.1 move MLLTrap to Alto	A. Semsoun	MLLTrap installed	30.6.16
2.2 RFQ design	L. Perrot	all drawings	30.6.17
2.3 RFQ construction	C. Planat	RFQ	31.12.17
2.4 electrode tests for RFQ and MLLTrap	T. Corbin	control & command	30.6.18
2.5 off-line test of RFQ and MLLTrap	E. Minaya		
2.6 on-line test of RFQ and MLLTrap	E. Minaya		
2.7 on-line experiments	E. Minaya		

3.1 simulation of detector geometry	N. N. (postdoc)	simulation package	30.6.17
3.2 design and construction of detectors	A. Lopez-Martens	detectors	31.3.18
3.3 detector tests at CSNSM	K. Hauschild		
3.4 off-line tests at Alto	A. Lopez-Martens		

Laser Induced Nuclear Orientation at Alto

Laser spectroscopy of silver and indium near ¹³²Sn (Z=50, N=82)

3. Lino

3. Lino

presently acquired:

- Ar⁺ pump laser
- tunable dye laser
- second harmonic generator

4.1 beam-line design	L. Perrot	all drawings	30.6.16
4.2 beam-line construction	C. Planat	beam line	31.12.16
4.3 HV and DAQ tests	T. Corbin	control & command	31.12.16
4.4 off-line commissioning	D. Yordanov		
4.5 on-line experiments	D. Yordanov		

4. Spiral-2/S3

Use the experimental set-ups from Alto with the exotic beams from S3 at Spiral-2 Optical simulations

- 1. S3 beam line from target to final focal point
- 2. Low-energy line from final focal point to Desir
- 3. Behaviour of decaying ions inside MLLTrap
- simulation of experiments with realistic physical input
- include measured 3D field maps
- define tune parameters for converging & mass-resolving mode

4. Spiral-2/S3

Pulse-shape algorithms

- recursive algorithm to extract relevant parameters sample by sample
- energy and time for energy resolution & pile-up rejection
- rise time for α/e particle identification
- synergy MLLTrap at Alto & Sirius silicon set-up at S3

Physics programme for first day experiments

Very heavy, superheavy elements & N=Z line

S3 high beam intensity, mass resolution and transmission, Sirius silicon detector

Doubly magic ²¹⁸U; spectroscopy of Fm isotopes; bridge the gap between cold and hot fusion; isomers beyond Z=110; ¹¹²Ba-¹⁰⁸Xe -¹⁰⁴Te super-allowed α decay

Ground-state properties

Nuclei not available elsewhere, high selectivity, gas catcher with coupling to Desir

⁹⁴Ag, ¹⁰⁰Sn, ⁸⁰Zr mass and charge radius, decay of ground and isomeric states, laser spectroscopy of transactinides (²⁵⁴No,...)

5.1 optical modes and physics cases	A. Drouart		
5.2 PSA algorithms and tests at Irfu/SPhN	B. Sulignano	PSA software	30.6.17
5.3 user-friendly simulation framework	A. Drouart	simulation package	30.6.17
5.4 off-line tests at S ³	B. Sulignano		
5.5 on-line experiments	A. Drouart		

- monthly technical meetings and yearly scientific workshop
- publications will be submitted to peer-reviewed journals

Task	Responsible	Deliverable	Date
1.1 move Polarex to Alto	H. Silvin	Polarex installed	31.12.16
1.2 vacuum and cryogenics tests	S. Roccia		
1.3 off-line physics runs	C. Gaulard		
1.4 beam-line design	A. Hüe	all drawings	31.12.17
1.5 beam-line construction	C. Planat	beam line	30.6.18
1.6 on-line experiments	C. Gaulard		
2.1 move MLLTrap to Alto	A. Semsoun	MLLTrap installed	30.6.16
2.2 RFQ design	L. Perrot	all drawings	30.6.17
2.3 RFQ construction	C. Planat	RFQ	31.12.17
2.4 electrode tests for RFQ and MLLTrap	T. Corbin	control & command	30.6.18
2.5 off-line test of RFQ and MLLTrap	E. Minaya		
2.6 on-line test of RFQ and MLLTrap	E. Minaya		
2.7 on-line experiments	E. Minaya		
3.1 simulation of detector geometry	N. N. (postdoc)	simulation package	30.6.17
3.2 design and construction of detectors	A. Lopez-Martens	detectors	31.3.18
3.3 detector tests at CSNSM	K. Hauschild		
3.4 off-line tests at Alto	A. Lopez-Martens		
4.1 beam-line design	L. Perrot	all drawings	30.6.16
4.2 beam-line construction	C. Planat	beam line	31.12.16
4.3 HV and DAQ tests	T. Corbin	control & command	31.12.16
4.4 off-line commissioning	D. Yordanov		
4.5 on-line experiments	D. Yordanov		
5.1 optical modes and physics cases	A. Drouart		
5.2 PSA algorithms and tests at Irfu/SPhN	B. Sulignano	PSA software	30.6.17
5.3 user-friendly simulation framework	A. Drouart	simulation package	30.6.17
5.4 off-line tests at S ³	B. Sulignano		
5.5 on-line experiments	A. Drouart		

1	Polarex	beam line	95	CSNSM
2		postdoctoral fellow	75	CSNSM
3	MLLTrap	RFQ	75	IPN
4		PIICR detection	30	IPN
5		in-trap detection	60	CSNSM+Irfu
6		postdoctoral fellow	100	CSNSM
7 8 9 10	Lino S³	beam line postdoctoral fellow PhD position workshop & missions	195 150 100 50 20 10	IPN Irfu Irfu Irfu
			900 840	

Additional funding

360 kE by IPN: 60 kE moving MLLTrap, 100 kE RFQ, 200 kE Lino lasers

Sirius detector system: CPIER grant Vallée de Seine 2015-2020

Advantages of our project

- synergy: bringing together IPN, CSNSM, Irfu/SPhN around low-energy nuclear physics, one of the main orientations of the community in France
- Iocal investment: it is based at Orsay
- uniqueness of Alto

reduced isobaric contamination from photofission innovative instrumentation with Phase Imaging pushing the limits extension to polarised beams with Lino only at Alto

- fully in line with Irfu/SPhN & IN2P3 scientific strategy for S3 & Desir at Spiral-2
- the collaboration possesses the low-energy nuclear physics know-how since several physicists have been working before at GSI, Jyvaskyla, Isolde

Polarex

Connections adaptation (vacuum, mechanics)	5
Support structure for detectors	20
Automatisation (vacuum, thermometry)	30
Beam profiler	10
Vertical beam-line (HV, pumps, mechanics)	30
	95

RFQ

Power installation	10
Differential pumping system	40
Main chamber	15
Vacuum components	5
HV platform	20
Gas regulation	5
Electrodes and mechanics	25
HV plate electronics	8
RF amplifier	7
RF probes	10
DC modules	15
Fast switches	12
Function generator	3
	175

PIICR detection

MCP with delay-line anode, fast-timing amplifiers, timi discriminators and digitisers RoentDek Handels Gmb	ing H
	30
In-trap detection + actuator	
5cm x 5cm pixelised electron detector Electronics 300 E/ch x 100 ch 233U source Actuator Sub-Miniature XYZ Linear Stage	5 30 5 20
	60
Lino	
Vacuum numns, valves, flanges	30

vacuum pumps, vaives, fianges	30
Charge exchange, deflection, quadrupole	40
HV & data acquisition (3 high-precision 10 kV power	
supplies, voltage amplifier, digital-to-analog converter,	
scaler, PXI crate)	70
Optical detection (photomultipliers, electronics)	30
<u>High-precision HV with ripple < 10⁻⁵</u>	25
	195