

Latest from the LHC...

Run-II of the LHC has come up with a new surprise (December, 2015): An excess in the di-photon invariant mass distribution around 750 GeV. The excess is compatible with a spin-0 or a spin-2 resonance and can not be explained within the Standard Model (SM) framework.

Di-jet production

Di-photon from photon fusion

An apparent solution is to use small c_{GG} , c_{BB} to efface the constraints of di-jet searches and photon fusion process, yet to reproduce the observed $\sigma(pp(gg) \to s \to \gamma\gamma).$

 \blacktriangle The price of using small c_{GG} , c_{BB} values, i.e., a small Γ_s , can be compensated by adding extra, e.g., invisible decay mode for the resonance.

The sparkling advantages....

 \star Di-photon signal primarily through $s \to aa \to 4\gamma$, independent of c_{BB} for $m_a \leq 500$ MeV, needed for experimentally viable collimated photon pairs.

OLYTECHNIQUE

 \star Main decay mode of the resonance s, i.e., $s \to aa$ is sensitive to λ_{Φ} and independent of c_{GG} . Thus, with large λ_{Φ} , large Γ_s appears naturally without violating di-jet bound.

 \star Sizable production cross-section with branching ratio $s \rightarrow aa \sim 1$, independent of c_{GG} .

 \star Smaller values of the associated c_{GG} , c_{BB} couplings also ameliorate constraints from dark matter searches.

Information	ATLAS	CMS
- $ 1$		
$ m E_{CM},~{\cal L}~({\sf TeV},{\sf fb}^{-1})$	13, 3.2	13, 3.3
$\sigma(gg \to S/G \to \gamma\gamma)$ (fb)	10 ± 3	6 ± 3
Local significance	3.9σ	$2.8\sigma - 2.9\sigma$
Global significance	2.0σ	$< 1\sigma$
Largest significance for mass (GeV)	750	760
Largest significance for width/mass (%)	6.0	1.4
Estimated width (GeV)	45	10.64

An insignificant hint was also observed during run-I with 8 TeV centre-ofmass energy.

▼ Unfortunately, a large invisible decay width would indicate sizable couplings between the resonance and the invisible particles, e.g., dark matter which are constrained from different dark matter searches:

v Dark matter mass $m_{\chi} \lesssim 375$ GeV, with sizable $s\chi\chi$ coupling, is excluded in the absence of $pp \rightarrow s \rightarrow \chi \chi \rightarrow$ large missing transverse energy signal. ▼ 375 GeV $\leq m_{\chi} \leq 1$ TeV is in tension with dark matter searches.

Di-photon excess is incompatible with dark matter ?

An elegant proposal: Illuminating the darkness with collimated photon pairs

Waking up with an idea [3]...

 \star How about producing two pairs of collimated photons from a pair of *light* pseudoscalars, a, produced from $s \rightarrow aa$ process.

 \star Dark matter mass in the span of 200 GeV to 1 TeV as well as keV dark matter can co-exist with the observed di-photon excess.

 \star The width of the resonance can change depending on the scale of dark matter mass.

The results in a nutshell...

 \star Summary plot representing points in the (m_{χ}, Γ_s) plane that simultaneously respect the LHC and cosmological constraints and correspond to different di-photon production cross-sections.

R. What we would like to know about this resonance:

 \clubsuit Why a stand-alone excess in $\gamma\gamma$ without any accompanying partners... e.g., excess in di-jets or in ZZ, $Z\gamma$ etc.

• What is the spin of this resonance: an answer is well envisaged with more data-set.

& What is the width of this resonance: The CMS run-II data prefers a moderate width ~ 10.6 GeV while run-I+II data-set hints a narrow width $\sim 0.1 \text{ GeV}.$

ATLAS, on the other hand, votes for a width as large as 45 GeV.

& What can we expect from this excess, e.g., a zoo of new particles beyond the SM awaiting to be detected ?

• What is the *complete* underlying theory to explain this excess ?

Explaining the excessnot quite complete

The ready-to-use *minimal effective* Lagrangian for a scalar resonance, s:

 $\frac{c_{BB}}{\Lambda} s B^{\mu\nu} B_{\mu\nu} + \frac{c_{GG}}{\Lambda} s G^{\mu\nu}_{\alpha} G^{\alpha}_{\mu\nu},$ effective couplings between the resonance and the SM gauge fields

What do we learn from this Lagrangian...

- The Lagrangian contains both U(1) preserving and U(1) violating terms. The latter is needed to promote a to a pseudo-Goldstone boson after spontaneous breaking of the associated U(1).
- After spontaneous breaking of the U(1) symmetry, one gets $\Phi = (v_{\Phi} + v_{\Phi})$ $(s+ia)/\sqrt{2}$ and hence, mass of the scalar resonance $m_s = \sqrt{2\lambda_\Phi v_\Phi}$, mass

	(I
Final	words
I IIIM	

The studied framework can accommodate the observed resonance with correct production cross-section and a width in the span of a few GeV to 50 GeV.

Information about the new physics, e.g., new scalars/fermions beyond the SM that can generate this excess through higher order effects, are encapsulated within c_{BB} , c_{GG} couplings.

The trivial success:.....

This effective Lagrangian can explain the excess, e.g., the observed $\sigma(pp \to s \to \gamma \gamma)$ and the width Γ_s with free parameters c_{BB} , c_{GG} and a suitable new physics scale Λ .

 \diamond Certain specific choices of c_{BB} , c_{GG} values can justify the observed production cross-section, $\sigma(pp(gg) \rightarrow s \rightarrow \gamma\gamma)$ and possibly the large decay width, $\Gamma_s \sim 45$ GeV.

The trivial and not-so trivial issues:.....

 \checkmark Large $c_{GG} \gtrsim 0.1$ values are constrained from di-jet searches, $gg \rightarrow 0.1$ $s \rightarrow gg$. Similarly, $c_{BB} \gtrsim 0.1$ values are constrained from photon fusion process, $\gamma\gamma \rightarrow s \rightarrow \gamma\gamma$.

of the pseudo-Goldstone $m_a = \sqrt{2}\epsilon_{\Phi}$, dark matter mass $m_{\chi} = \sqrt{2}g_{\chi}v_{\Phi}$. We consider $\Lambda = v_{\Phi}$ in this study.

The chosen Lagrangian contains five independent free relevant parameters, $c_{BB}, c_{GG}, \lambda_{\Phi}, m_a, m_{\chi}$.

• Using the information of measured Γ_s , m_s and $\sigma(pp \to s \to \gamma\gamma) \Longrightarrow$ only two free parameters left.

What do we need ?

 \star A light pseudo-Goldstone a such that the separation between the pair of boosted and collimated daughter photons, $\Delta \Phi \sim 4m_a/m_s < 1.15^{\circ}$, resolution of the LHC detector.

 \star The pseudo-Goldstone *a* decaying before the electromagnetic calorimeter (ECAL), i.e., decay length ≤ 1 m.

 \star Need $m_a \lesssim 2$ GeV with $m_a|_{min} \gtrsim 200$ MeV, estimated from other constraints.

 \star A correct relic density for the dark matter is also possible for 200 GeV $\lesssim m_{\chi} \lesssim 1$ TeV as well as $m_{\chi} \sim \text{keV}$.

 \star The required values of c_{BB} , c_{GG} couplings are consistent with the LHC constraints and dark matter searches.

 $\star \chi \chi \to sa$ annihilation process gives a characteristic gamma-ray box signal that can be proved by the Cherenkov Telescope Array (CTA).

References

[1] ATLAS-CONF-2015-081; ATLAS-CONF-2016-018. [2] CMS-PAS-EXO-15-004; CMS-PAS-EXO-16-018.

[3] **Re-opening dark matter windows compatible** with a diphoton excess. arXiv:1603.05601 [hep-ph]. Giorgio Arcadi, Pradipta Ghosh, Yann Mambrini, Mathias Pierre.