

UNIVERSITÉ PARIS SUD

UNIVERSITE PARIS-SACLAY

Damian Ralet*, G. Georgiev for the AGATA and E672 collaborations

*Centre de Science Nucléaire et de Science de la Matière, Orsay, France E-mail: ralet@csnsm.in2p3.fr

Objectives of the AGATA@GANIL experiment

Analysis challenges

- Measurement important for the experimental information across the N = 126 and Z = 82closed shell.
- 208 Pb is a key nucleus for the Shell-Model.
- Even-even nuclei around ²⁰⁸Pb: few transition strength measured.
- For example $B(E2; 2^+ \rightarrow 0^+)$ of ²⁰⁶Hg unknown.
- Lack of g-factor measurement in this region.

Experimental setup

• 208 Pb beam at 6.25 MeV: multi-nucleons transfer reaction.

- Identification of the proton number transferred in the reaction is not possible: • Identification of the fragments rely on mass, X-rays, and known γ -ray transitions • AGATA [2]: calibration and treatment for a good energy resolution after Dopplercorrection
- Large amount of data recorder: 28TB of data on disks

Fig. 7: Issue with the small ionization chamber

Fig. 8: Picture of the AGATA detectors

- ¹⁰⁰Mo target (1 mg/cm²) with a ⁵⁸Ni plunger degrader (~ 2 mg/cm²).
- Heavy recoil detected by the VAMOS spectrometer [1] positioned at 26°.
- Key: for Z > 50 VAMOS cannot identified the proton number of the fragment thus the utilization of an newly developed ionization chamber in the reaction chamber.
- AGATA [2] provides large angle coverage needed for g-factor measurement.

Analysis of the data

Mass identification in VAMOS for $A \approx 200$ is not straightforward

Fig. 9: Hit distribution in AGATA

Physics output

• Known case of 3^- state of 20^{8} Pb present in the data: good verification point. • Lifetime $19/2^-$ state of ²⁰⁷Pb can be measured.

Conclusions

• A good time resolution is needed.

• A really fine calibration is needed to obtained a good mass resolution in the full focal plane.

Fig. 5: $\sim 30\%$ of the recorded statistic with a

mass resolution

Fig. 6: Identification of the mass and charge state for three Multi-Wires (labels 5,6,7) detectors of the final focal plane of VAMOS

• Data analysis is on-going, and required a fine treatment of the data.

• Pushing the limits of VAMOS detection systems: mass $A \approx 200$ have never been done before.

• VAMOS detectors need to have an improved calibration with correction of second order aberrations: e.g. the angular dependence of the trajectories in the spectrometers • It is still not clear if the full focal plane of VAMOS detector can be used.

• The status of the analysis assure physics outputs.

References

[1] M. Rejmund et al. (2005) Performance of the improved larger acceptance spectrometer VAMOS++ NIM A, 646: 184-191. [2] S. Akkoyun et al. (2012) AGATA - Advanced GAmma Tracking Array NIM A, 668: 26-58.

Funding: This work is supported by the P2IO Excellence Laboratory.

