

ALERT

A Low Energy Recoil Tracker for CLAS12 at Jefferson Lab

Unité mixte de recherche

CNRS-IN2P3 Université Paris-Sud

91406 Orsay cedex Tél. : +33 1 69 15 73 40 Fax : +33 1 69 15 64 70 http://ipnweb.in2p3.fr Raphaël Dupré

IPN Orsay

Generalized Parton Distributions

DVCS on Nuclei

- An opportunity to study nuclei in term of quarks
 - Study of the EMC effect

The spin-0 simplification

– Only one GPD for Helium-4 \rightarrow 1 GPD \rightarrow 2 CFFs

Impulse partial wave approximation

- Convolution of nucleons in nuclei and partons in nucleons distributions
- Only nucleons are considered
- No interaction with A-1
- Fermi motion (including some off-shellness)

V. Guzey and M. Strikman Phys. Rev. C 68, 015204

Measuring DVCS on Helium

• Jefferson Laboratory

- High intensity 12 GeV electron beam
- High quality beam
 - 100% duty factor
 - Around 150 µm wide
 - Intensity up to 100 μ A

CEBAF Large Acceptance Spectrometer: CLAS12

- Nearly 4π

•

- Offers electron and proton identification for our experiment
- Recording rates up to 40 kHz
- No capabilities to detect slow nuclei

Detection Needs

Need capabilities at very low momentum

- Down to ~200 MeV/c for 4He (5-6 MeV kinetic energy)
- Our main limitation is from recoil stopped in target material
- Target is planned to be only 3 atm, 0.5 cm radius with 15 μ m kapton walls
- Need to be able to handle high rates to measure DVCS

• The solution

- Very light wire chamber placed right outside the target
 - With stereo angle between wires
- Small scintillating tiles for time of flight measurement
- Capabilities to handle high rates
 - Short drift time <250 ns
 - Translate into an average 0.6 background track per event

• Can we design such a detector ?

- The steroangles complicate things a lot
- Tension of thousands of wires correspond to hundreds of kilograms

• Can we make wire chambers lighter ?

- Use carbon wires instead of golden tungsten
- Could find application in many other low energy nuclear experiments, in particular SOFIA at GSI (L. Audouin)

• How to read out ALERT ?

- Drift time are key to this experiment
- Use last generation front-end chip from CEA-Saclay: DREAM
 - Need to be tested in these conditions

Funded by P2IO in 2015

– R&D project of 51 k€ for 3 years

Design and Prototyping

First prototype is designed

- Sector system to simplify maintenance and construction
- Mechanical structure on the outside

• To be refined in the future

- Optimization of materials to reduce multiple scattering
- Scintillator system to be integrated in a second version
- Make access for gas and electronics connections

Orsay Tests

Progress in IPN:

- 3D printed tests
- Soldering wires on curved surface
- Gluing and soldering carbon wires

To be wired very soon

First prototype

Carbon Wires

Paving the way for carbon wire chamber at sub-atmospheric and atmospheric pressure

G. ~Charles^{a,*}, L. ~Audouin^a, J. Bettane^a, R. Dupre^a, B. Genolini^a, N. Hammoudi^a, M. Imre^a, V. Le Ven^a, B. Mathon^a, A. Maroni^a, T. Nguyen Trung^a, E. Rauly^a

^aInstitut de Physique Nucléaire, CNRS-IN2P3, Univ. Paris-Sud, Université Paris-Saclay, 91406 Orsay Cedex, France

- We are extending the GPD program to nuclei
 - Which necessitates new generation detectors
- Thanks to P2IO we Started our R&D program
 - First prototype design will be plugged to electronics before Summer
 - Carbon Wires initial test done \rightarrow to be published soon

• Physics program for this detector is developing rapidly

- Collaboration with Jefferson Lab, Temple University and Argonne National Laboratory is starting
- Four proposals submitted this morning to Jefferson Lab PAC use the ALERT detector

Future developments

- Implement carbon wires on a larger scale
- Time of flight system studies will start next year

Extracting a 3D Map

GPDs can be interpreted as 3D maps

- Hankel transform at ξ=0 gives the probability density as a function of x and the impact parameter M. Burkardt Int.J.Mod.Phys. A18 (2003) 173-208
- The polarized GPDs give the correlation between spin and position in the nucleon

• Fits of data

- Putting together cross sections and spin asymmetries
- Global fit allows to extract the 3D map of the proton M. Guidal et al. Rept.Prog.Phys. 76 (2013) 066202

 $E_e = 5.75 \text{ GeV}, x_B = 0.36, Q^2 = 2.3 \text{ GeV}^2$

b (fm)