

HIGHSPID

(HIgh Granularity HodoScope for Particle IDentification)

Yorick Blumenfeld IPNO

OUTLINE

- Background: reactions with radioactive beams
- The HIGHSPID Project
- Results
- Future

Physics cases for direct reactions

Direct reactions : A great tool to investigate Exotic Nuclei and astrophysics processes

Good energy regime :5-100 MeV/A

13 Lol for Spiral2+ Lol @ISOLDE

SHELL EVOLUTION

How Magic is ⁷⁸Ni ? W.Catford et al

 Spectroscopic studies around ⁷⁸Ni and beyond N=50 via transfer and coulex G. De France et al

 Neutron shell evolution in weakly bound ^{134,135}Sn via (d,p) V. Lapoux, O.Sorlin
PAIRING

 Probing the pairing interaction through two-neutron transfer reactions D.Beaumel et al

Study of pair transfer in ¹³⁴Sn via
¹³²Sn(t,p) O.Sorlin, K.Wimmer

 2p capture on ¹⁵O and proton correlation in 2p emission from excited states of ¹⁷Ne *M.Assié*

CLUSTERS

• Exploration of cluster breakup in light nuclei J.A.Scarpaci, M.Assié

+ NEAR BARRIER REACTIONS, PDR, ASTROPHYSICS

Context for nuclear physics

Radioactive beam facilities worldwide

Landscape of Si detectors for RIB Physics @ P2IO Labs

4π Si array fully integrable in PARIS/AGATA/EXOGAM2

Collaboration: IPNO, INFN-Legnaro, UHU (Spain)., CEA Saclay, Surrey U., BARC (India)

HIGHSPId Project

- Collaboration IPNO, LAL, IRFU
- Scientific Responsible: Y. Blumenfeld (IPNO)
- Technical responsible : B. Genolini (IPNO)
- Grant: 67 K€
- Timeline 2013-2015; extended by 1 year for IRFU
- Goals
 - Equip lab with « Wavecacther » Digitizer for tests
 - Submit iPACI: ASIC version of PACI preamplifier
 - Purchase prototype detector for GASPARD project
 - Design backend electronics

Trapezoidal Si detector for GASPARD

Specifications

- large area , 6" wafers, nTD, 500um thick

- 128X+128Y (pitch~700 um)
- <100> random cut (8deg)

- Thin frame / Kapton readout at 90deg /High density connectors

- Produced by Micron semiconductor

WaveCatcher Characteristics

- •System equivalent to a 64 Channel Oscilloscope + analysis
- •Digitization between 400 MHz and 3 GHz over 1024 channels
- •Acquisition rate 100 Hz
- •Deadtime 100 μs
- •Buffer of 7 events in FPGA

HiGHSPId project

Spokespersons : Y. Blumenfeld, B. Genolini (IPN) Collaboration: IPNO, LAL, IRFU

Grant: 67 k€

Electronics developments

- ASIC preamp I/Q (iPACI)
- Digitizeur (Wavecatcher)

Front-End Electronics

iPACI from IPNO (J-J. Dormard) gives current & charge signals 1st version =9 channels (received Jul. 2014)

	3,3V version
Energy max	50 MeV
Consumption	3 mA (10mW)
Output swing	2V
Input-refered noise (FWHM)	5 keV (after shaper) 550 e (Si)
Resolution	13 bits ENOB
Current gain	2k
Area	> (100µm)²
Energy linearity	0.6% FS

iPACI Characteristics I

iPACI Characteristics II

- Input injection => leading edge of 20ns in a 1pF injection capacitance
- Charge output gain (51 Ω impedance) = 32mV/MeV-Si
- Charge output => linearity up to 50 MeV
- Current output (for 20ns)=> linearity up to 40 MeV

HiGHSPId project

Spokespersons : Y. Blumenfeld, B. Genolini (IPN) Collaboration: IPNO, LAL, IRFU

M.Assié et al., EPJA 51 (2015) 11

Sampling rate

Electronics Requirements

- Current and Charge signals > iPACi
- Digitize current signal with minimum 200 MHz and 100ns range
- Digitize charge signal with 50 MHz or peak sensing (track and hold)
- Attempt to benefit from previous developments at IRFU (or at Valencia)
- IRFU
 - ASAD chip developed for GET
 - SAMPIC chip (needs to be modified)

Backend Tests with ASAD and SAMPIC

iPACI charge output coupling with ASD board from CEA => modification on iPACI + interface board (1)

ASAD/SAMPIC test setup

F. Bouyjou, JJ Dormard, O. Gevin, E. Rauly

- Charge signals from iPACI can be digitized by ASAD board with minor modifications on boards
- Current signal from iPACI can be digitized by SAMPIC board if the pulse width is lower than 20ns
- Aquisition systems for ASAD and SAMPIC are fully different
- During these tests, I and Q signal correlation was not performed => not so easy

Need to strongly modify SAMPIC for lower frequency and larger range

Summary

- What we have accomplished
 - Equipped the lab with a state of the art « Wavecatcher » digitizer for testing purposes
 - Designed, built and tested a Q and I preamp ASIC
 - Studied and validated PSD of Light Charged Particles with a Si-Strip detector
 - Purchased and tested a trapezoidal Si-Strip detector designed for the GASPARD array
 - Performed first tests of signal treatment with ASAD and SAMPIC ASICs
- What remains to be done
 - Link ADAD and SAMPIC acquisition systems
 - Test with Si-Strip detector.