

EE events

Thibault Guillemin (With inputs from many people)

High mass diphoton meeting March 24, 2016

Outline

- EE tension
- Purity
- Kinematics

Observed significances

Exotics		
	obs. $Z(\sigma)$	exp. $Z(\sigma)$
	3.9	5.3
lcap-Barrel	0.3	1.8
	3.3	0.3
	Exotics	Exoticsobs. $Z(\sigma)$ 3.9dcap-Barrel0.33.3

Events / (44.3902 GeV) internal Signal + Background fit 10 Background component 10 √s = 13 TeV ∫ L = 3.2 fb⁻¹ 10 Data - fitted background 10 -5 -10È 600 800 1000 1200 1400 1600

Exotics +TightIso

Selection	ODS. Z (σ)	exp. Z (σ)
Barrel-Barrel	1.5	2.7
Barrel-Endcap/Endcap-Barrel	2.2	1.3
Endcap-Endcap	0.6	0.6

- N.B. 1: done for a scalar signal model but similar behaviour observed for a graviton signal model.

N.B. 2: distribution of the Z values between categories more relevant than the absolute values due to the procedure used.
N.B. 3: scalar selection not discussed at all (2 EE events in 700-850).

- 3 σ tension for the EE category with loose isolation.

- The tension observed in this category completely disappears when going to tight isolation.

Purity (1/2)

Purity (2/2)

- Jet-jet contribution decreased by a factor ~10.
- Purity above 80% in all the mass range.

Mass shapes: comparison to MC gg

- Very strong slope in the Looselso case
- Slope reduced in the Tightlso case, but still clearly there, while the purity is >80%: physics modeling issue with Sherpa?

$\Delta\eta$ in mass bins (1/2)

$\Delta\eta$ in mass bins (1/2)

$\Delta\eta$ modeling (inclusive case)

- Bad modeling of $\Delta\eta$ observed in the 200-600 GeV range, while the purity is >90%.

- It may be interesting to:
- look at the distribution of gamma-jet events from control regions
- see the impact on MC of a $\Delta \eta$ reweighting (increase of the high $\Delta \eta$ contribution) on the mass shape.

Modeling of gamma-jet events from control regions (1/2)

Select loose-not-tight ID photons (loose isolation applied) to define gamma-jet dominated control regions and compare to gamma-jet MC.

Use these control regions to look at the η -category distribution in the signal region.

Modeling of gamma-jet events from control regions (2/2)

- Look at the shower shapes of the grey photons (passing loose isolation but failing tight isolation) in EE events.

- Repeat the study already done in the crosschecks note, but restricting to EE events.
- → Is the jet rejection in the EC at high p_T under control?
- To do:
- Start inclusively (in p_T) and look in p_T bins (as statistics allows).
- Correlations with the conversion status?