High-energy astrophysical neutrinos: where do we stand, where do we go?

Mauricio Bustamante

Center for Cosmology and AstroParticle Physics (CCAPP) The Ohio State University

Laboratoire de Physique Nucléaire et de Hautes Énergies May 11, 2016

The history of neutrinos is a history of fighting against the odds

The history of neutrinos is a history of fighting against the odds

... and winning

The history of neutrinos is a history of fighting against the odds ...and winning

Some reasons why neutrinos are special:

- 1 They are lighter than any other massive particle we know of
- 2 They retain their quantum nature over long distances
- 3 They are notoriously anti-social
- (We believe) they reach higher energies than anything else

Let's talk energy scales...

5 Unlike gamma rays and cosmic rays, neutrinos have flavor

Next *v*-Nobel for high-energy *v*'s?

The era of neutrino astronomy has begun!

IceCube has seen 54 events with 30 TeV - 2 PeV in 4 years

... and 51 more events > 30 TeV

Mauricio Bustamante (CCAPP OSU)

The era of neutrino astronomy has begun!

IceCube has seen 54 events with 30 TeV – 2 PeV in 4 years

Diffuse per-flavor astrophysical flux [ICECUBE 2015]:

$$\Phi_{\nu} = \left(6.7^{+1.1}_{-1.2} \cdot 10^{-18}\right) \left(\frac{E}{100 \text{ TeV}}\right)^{-(2.5 \pm 0.09)} \text{ GeV}^{-1} \text{ cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$$

The era of neutrino astronomy has begun!

IceCube has seen 54 events with 30 TeV – 2 PeV in 4 years

Diffuse flux compatible with extragalactic origin [WAXMAN & BAHCALL 1997]:

$$E^2 \Phi_
u = (0.95 \pm 0.3) imes 10^{-8} \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$$
 (per flavor)

The era of neutrino astronomy has begun!

IceCube has seen 54 events with 30 TeV - 2 PeV in 4 years

Arrival directions compatible with an isotropic distribution -

Detecting the neutrinos: IceCube

IceCube: km³ in-ice South Pole Čerenkov detector

- vN interactions (N = n, p) create particle showers
- 86 strings with 5160 digital optical modules (DOMs)
- depths between 1450 m and 2450 m

Detecting the neutrinos: IceCube

IceCube: km³ in-ice South Pole Čerenkov detector

- vN interactions (N = n, p) create particle showers
- 86 strings with 5160 digital optical modules (DOMs)
- depths between 1450 m and 2450 m

Below $E_{\nu} \sim 5$ PeV, there are two event topologies:

- Showers: generated by CC ν_e or ν_τ ; or by NC ν_x
- Muon tracks: generated by CC ν_{μ}

(Some muon tracks can be mis-reconstructed as showers)

At \gtrsim 5 PeV (no events so far), all of the above, plus:

- ▶ Glashow resonance: CC $\bar{\nu}_e e \rightarrow W^-$ interactions at 6.3 PeV
- Double bangs: CC $\nu_{\tau} \rightarrow \tau \rightarrow \nu_{\tau}$

Flavor composition is inferred from the number of showers and tracks

What we know / don't know

What we know

- compatible with isotropy
- power-law $\propto E^{-2.5}$
- not coincident with transient sources (*e.g.*, GRBs)
- not correlated with known sources
- flavor composition:
 compatible with equal proportion of ν_e, ν_μ, ν_τ
- also: no prompt atmospheric neutrinos

What we don't know

- what are the sources?
- what is the production mechanism?
- is there a cut-off at 2 PeV?
- what is the Galactic contribution, if any?
- what is the precise relation to UHE cosmic rays?
- what is the precise flavor composition of the flux?
- is there new physics?

... but we have good ideas on all

Why did we expect high-energy neutrinos?

Because we see loads of ultra-high-energy cosmic rays -

Cosmic-ray accelerators should also produce neutrinos >

Mauricio Bustamante (CCAPP OSU)

HE particles from astrophysical sources

Relativistically-expanding blobs of plasma containing *e*'s, *p*'s, and γ 's collide with each other, merge, and emit HE particles (*e.g.*, in a GRB)

Joint production of UHECRs, ν 's, and γ 's

neutrino energy \simeq proton energy / 20

neutrino energy \simeq gamma-ray energy / 2

[*Actually*, it is more complicated ... This neutron model of CR emission is now strongly disfavored [AHLERS et al., Astropart. Phys. 35, 87 (2011)] [ICECUBE COLL., Nature 484, 351 (2012)] But we can do better by letting the p's escape without interacting [BAERWALD, MB, WINTER, ApJ 768, 186 (2013)] [BAERWALD, MB, WINTER, Astropart. Phys. 62, 66 (2015)] [MB, BAERWALD, MURASE, WINTER, Nat. Commun. 6, 6783 (2015)]]

Mauricio Bustamante (CCAPP OSU)

Because of the cosmological expansion:

Cosmological photon backgrounds:

 γ 's and e^{\pm} 's dump energy into e.m. cascades through

- ▶ pair production, $\gamma + \gamma_b \rightarrow e^+ + e^-$
- ▶ inverse Compton scattering, $e^{\pm} + \gamma_b \rightarrow e^{\pm} + \gamma$

Lower-energy (GeV-TeV) gamma-rays detected by Fermi-LAT

p's are deflected by extragalactic magnetic fields

⇒ except for the most energetic ones, they are Pierre Auger found weak correlation not expected to point back to the sources

with known AGN positions

They lose energy through:

▶ pair production, $p + \gamma_b \rightarrow p + e^+ + e^-$ depend on the redshift evolution

> photohadronic interactions, $p\gamma_b$

of the cosmological γ backgrounds

Initial UHE ν flavor fluxes: $\nu_e : \nu_\mu : \nu_\tau = 1 : 2 : 0$

Probability of $\nu_{\alpha} \rightarrow \nu_{\beta}$ transition: $P_{\alpha\beta}(E_0, z)$

Flavor oscillations redistribute the fluxes — at Earth: $\nu_e : \nu_\mu : \nu_\tau \approx 1 : 1 : 1$ (might be changed by exotic physics!)

The need for km-scale neutrino telescopes

Expected ν flux from accelerators of UHECRs (Waxman & Bahcall 97–98):

$$E^{2} \Phi_{\nu} \sim 10^{-8} \frac{f_{\pi}}{0.2} \left(\frac{\dot{\varepsilon}_{CR}^{[10^{10}, 10^{12}]}}{10^{44} \text{ erg Mpc}^{-3} \text{ yr}^{-1}} \right) \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$$

Integrated flux above 1 PeV:

$$\Phi_{
u} \left(> 1 \text{ PeV}
ight) \sim \int_{1 \text{ PeV}}^{\infty} rac{10^{-8}}{E^2} \ dE \sim 10^{-20} \ ext{cm}^{-2} \ ext{s}^{-1} \ ext{sr}^{-1}$$

Number of events from half of the sky (2π) :

$$\mathit{N}_{\nu}\simeq 2\pi\cdot\Phi_{
u}\left(>1~ ext{PeV}
ight)\cdot1~ ext{yr}\cdot\mathit{A}_{ ext{eff}}pprox\left(2.4 imes10^{-10}~ ext{cm}^{-2}
ight)\mathit{A}_{ ext{eff}}$$

To detect $N_{\nu} > 1$ events per year, we need a detector area of

$$A_{
m eff}\gtrsim 0.4~
m km^2$$

Therefore, we need km-scale detectors, like IceCube

Spectral shape

High-energy astrophysical neutrinos follow a power law $\propto {\it E}^{-2.5}$ —

Per-flavor flux:

$$\Phi_{\nu} = \left(6.7^{+1.1}_{-1.2} \cdot 10^{-18}\right) \left(\frac{E}{100 \text{ TeV}}\right)^{-(2.5 \pm 0.09)} \text{ GeV}^{-1} \text{ cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$$
Spectrum from different data sets

The spectral shape varies depending on the data set used -

- With through-going muon tracks: 2.0–2.2
- With high-energy starting events: ~ 2.6

Neutrinos from the Galactic Center? Atmospheric neutrino contamination at low *E*?

Arrival directions

- ▶ 24 cascade events (\oplus) + 8 tracks (\otimes) with $E_{dep} > 60$ TeV
- 20 upgoing tracks with $E_{\mu} \gtrsim 50$ TeV
- No significant spatial or temporal correlation of events

Flavor ratios — at the sources and Earth

Neutrino production at the astrophysical source via pion decay:

$${m
ho}\gamma o \Delta^+$$
(1232) $o \pi^+ {m n} \qquad \pi^+ o \mu^+
u_\mu o {m e}^+
u_e ar
u_\mu
u_\mu$

Flavor ratios at the source: $(f_e: f_\mu: f_\tau)_S \approx (1/3: 2/3: 0)$

At Earth, due to flavor mixing:

$$f_{\alpha,\oplus} = \sum_{\beta} \langle \boldsymbol{P}_{\beta\alpha} \rangle \boldsymbol{f}_{\beta,\mathbf{S}} = \sum_{\beta} \left(\sum_{i=1}^{3} |\boldsymbol{U}_{\alpha i}|^2 |\boldsymbol{U}_{\beta i}|^2 \right) \boldsymbol{f}_{\beta,\mathbf{S}}$$

 $(1/3:2/3:0)_{S} \xrightarrow{\text{best-fit mixing params. NH}} (0.36:0.32:0.32)_{\oplus}$

Other compositions at the source:

 $\begin{array}{rcl} (0:1:0)_{S} & \longrightarrow & (0.26:0.36:0.38)_{\oplus} \mbox{ (``muon damped'')} \\ (1:0:0)_{S} & \longrightarrow & (0.55:0.26:0.19)_{\oplus} \mbox{ (``neutron decay'')} \\ (1/2:1/2:0)_{S} & \longrightarrow & (0.40:0.31:0.29)_{\oplus} \mbox{ (``charmed decays'')} \end{array}$

"Flavor triangle" or Dalitz/Mandelstam plot

Assumes underlying unitarity: sum of projections on each axis is 1 How to read it: follow the tilt of the tick marks, *e.g.*,

IceCube analysis of flavor composition

Using contained events + throughgoing muons:

- Best fit: $(f_e: f_\mu: f_\tau)_{\oplus} = (0.49: 0.51: 0)_{\oplus}$
- Compatible with standard source compositions
- Bounds are weak need more data and better flavor-tagging

Flavor combinations at Earth from std. mixing

All possible flavor combinations accessible with standard mixing?

Std. mixing can access only $\sim 10\%$ of the possible combinations

Flavor combinations at Earth from std. mixing

All possible flavor combinations accessible with standard mixing?

Std. mixing can access only $\sim 10\%$ of the possible combinations

Flavor combinations at Earth from std. mixing

All possible flavor combinations accessible with standard mixing?

Std. mixing can access only $\sim 10\%$ of the possible combinations

Selected source compositions

We can look at results for particular choices of ratios at the source:

MB, BEACOM, WINTER, PRL 115, 1611302 (2015)

Selected source compositions

We can look at results for particular choices of ratios at the source:

MB, BEACOM, WINTER, PRL 115, 1611302 (2015)

Selected source compositions

We can look at results for particular choices of ratios at the source:

MB, BEACOM, WINTER, PRL 115, 1611302 (2015)

Perfect knowledge of mixing angles

In a few years, we might know all the mixing parameters except δ_{CP} :

MB, BEACOM, WINTER, PRL 115, 1611302 (2015)

New physics? Neutrino decay affects flavor ratios

or

En route, unstable neutrino mass eigenstates might decay via

 $\nu_2, \nu_3 \rightarrow \nu_1$ normal mass hierarchy (NH) $f_{\alpha,\oplus}\left(E_0, z, \kappa_i^{-1}\right) = \sum_{\beta = \mathbf{e}, \mu, \tau} \left(\sum_{i=1}^{3} \right)$ 10 ⁻¹ = 10 s eV⁻¹ 10 $E_0 = 6 \text{ PeV}$ Decay damping D $E_0 = 4 \text{ PeV}$ 10-10 10- $E_0 = 2 \text{ PeV}$

Redshift z

 $\underbrace{\nu_1,\nu_2\to\nu_3}_{\nu_1,\nu_2\to\nu_3}$

inverted mass hierarchy (IH)

fraction of
$$\nu_i$$
 that reach Earth

$$\sum_{i} |U_{\alpha i}|^2 |U_{\beta i}|^2 D\left(E_0, z, \kappa_i^{-1}\right) f_{\beta, S}$$
(Note — NH: $\kappa_1^{-1} \to \infty$; IH: $\kappa_3^{-1} \to \infty$)

Complete decay (D = 0): all unstable neutrinos decay en route

$$f_{lpha,\oplus} = \left\{ egin{array}{c} |U_{lpha1}|^2\,, ext{ for NH} \ |U_{lpha3}|^2\,, ext{ for IH} \end{array}
ight.$$

Flavor ratios equal flavor content of the one stable eigenstate

BAERWALD, MB, WINTER, JCAP 1210, 020 (2012)

Mauricio Bustamante (CCAPP OSU)

1 2 3

10-

4 5

6

Decay: complete vs. incomplete

• Complete decay: only ν_1 (ν_3) reach Earth assuming NH (IH)

▶ Incomplete decay: incoherent mixture of ν_1 , ν_2 , ν_3 reaches Earth

Region of flavor ratios accessible with decay

Region of all linear combinations of ν_1 , ν_2 , ν_3 :

Decay can access only $\sim 25\%$ of the possible combinations

Mauricio Bustamante (CCAPP OSU)

High-energy astro ν 's

Region of flavor ratios accessible with decay

Region of all linear combinations of ν_1 , ν_2 , ν_3 :

Decay can access only $\sim 25\%$ of the possible combinations

What kind of NP lives outside the blue region?

- > NP that changes the values of the mixing parameters, e.g.,
 - violation of Lorentz and CPT invariance

[BARENBOIM, QUIGG, PRD 67, 073024 (2003)] [MB, GAGO, PEÑA-GARAY, JHEP 1004, 005 (2010)]

violation of equivalence principle

[GASPERINI, PRD 39, 3606 (1989)] [GLASHOW et al., PRD 56, 2433 (1997)]

coupling to a torsion field

[DE SABBATA, GASPERINI, Nuovo. Cim. A65, 479 (1981)]

renormalization-group running of mixing parameters

[MB, GAGO, JONES, JHEP 1105, 133 (2011)]

- active-sterile mixing [AEIKENS et al., 1410.0408]
- flavor-violating physics
- ▶ $\nu \overline{\nu}$ mixing (if ν , $\overline{\nu}$ flavor ratios are considered separately)

New physics — of the truly exotic kind

What kind of NP lives outside the blue region?

- > NP that changes the values of the mixing parameters, *e.g.*,
 - violation of Lorentz and CPT invariance

[BARENBOIM, QUIGG, PRD 67, 073024 (2003)] [MB, GAGO, PEÑA-GARAY, JHEP 100

violation of equivalence principle

[GASPERINI, PRD 39, 3606 (1989)] [GLASHOW et al., PRD 56, 2433 (1997)]

coupling to a torsion field

[DE SABBATA, GASPERINI, Nuovo. Cim. A65, 479 (1981)]

renormalization-group running of mixing parameters

[MB, GAGO, JONES, JHEP 1105, 133 (2011)]

- active-sterile mixing [AEIKENS et al., 1410.0408]
- flavor-violating physics
- ▶ $\nu \overline{\nu}$ mixing (if ν , $\overline{\nu}$ flavor ratios are considered separately)

Sources inside the Galaxy

Full or partial contribution:

Diffuse Galactic gamma-ray emission

[Ahlers & Murase 13; Joshi, Winter, Gupta 13] [Kachelriess & Ostapchenko 14; Neronov, Semikoz, Tchernin 13] [Neronov & Semikoz 14, 16; Guo, Hu, Tian 14; Gaggero, Grasso, Marinelli, Urbano, Valli 15]

Unidentified Galactic gamma-ray emission

[Fox, Kashiyama, Meszaros 13] [Gonzalez-Garcia, Halzen, Niro 14]

Fermi bubbles

[Ahlers & Murase 13; Razzaque 13] [Lunardini, Razzaque, Theodoseau, Yang 13; Lunardini, Razzaque, Yang 15]

Supernova remnants

[Mandelartz & Tjus 14]

Pulsars

[Padovani & Resconi 14]

Microquasars

[Anchordoqui, Goldberg, Paul, da Silva & Vlcek 14]

Sagitarius A*

[Bai, Barger, Barger, Lu, Peterson, Salvado 14; Fujita, Kimura, Murase 15,16]

Galactic halo

[Taylor, Gabici, Aharonian 14]

Heavy dark matter decay

[Feldstein, Kusenko, Matsumoto, Yanagida 13] [Esmaili & Serpico 13; Bai, Lu, Salvado 13] [Cherry, Friedland, Shoemaker 14] [Murase, Laha, Ando, Ahlers 15; Boucenna 15; Chianese, Miele, Morisi, Vitagliano 16]

(Compilation by M. Ahlers)

Two Galactic source examples

Hard Galactic diffuse emisssion

[Neronov, Semikoz, Tchernin 14]

- Red: neutrinos above 100 TeV
- Magenta: associated gamma rays in -30° < l < 30°, -4° < b < 4° of the Galactic Plane
- Solid (dotted) line: Γ = 2.4 (2.5)

PeV dark matter decay

[Murase, Laha, Ando, Ahlers 15]

- ► DM lifetime: $3 \cdot 10^{27}$ s ► DM $\rightarrow \begin{cases} \nu_e \bar{\nu}_e , BR = 12\% \\ q\bar{q} , BR = 88\% \end{cases}$
- NFW DM density profile

Galactic diffuse emission

Observed HESE events with $E_{dep} > 60$ TeV: tracks (\diamond), showers (\circ)

Galactic diffuse emission

Simulated map with 50% isotropic + 50% Galactic components ----

- ► Tracks: ◊ ; showers: ○
- ► Galactic ν: ◊/○; isotropic: ◊/○; atmospheric: ◊/○

Different diffuse emission templates

Comparing observed arrival directions and directions from pseudo-experiments obtained with different templates —

- Diffuse Galactic emission: $\lesssim 50\%$
- Quasi-diffuse emission (SNRs, PWN): $\lesssim 65\%$
- *Fermi* bubbles: $\lesssim 25\%$
- Unidentified TeV gamma-ray sources: $\leq 25\%$
- Dark matter decay: unconstrained

[Ahlers, Bai, Barger, Lu 15]

Sources outside the Galaxy

Association with UHECR sources

[Kistler, Stanev, Yuksel 13] [Katz, Waxman, Thompson, Loeb 13; Fang, Fujii, Linden, Olinto 14] [Moharana & Razzaque 15]

Association with gamma-ray background

[Murase, Ahlers, Lacki 13] [Chang & Wang 14; Ando, Tamborra, Zandanel 15]

Active galactic nuclei (AGN)

[Stecker 13; Kalashev, Kusenko, Essey 13] [Murase, Inoue, Dermer 14; Kimura, Murase, Toma 14] [Kalashev, Semikoz, Tkachev 14] [Padovani & Resconi 14; Petropoulou+ 15; Padovani+ 16; Kadler+16]

Gamma-ray bursts (GRBs)

[Murase & loka 13; Dado & Dar 14; Tamborra & Ando 15] [Bustamante, Baerwald, Murase, Winter 15] [Senno, Murase, Meszaros 16]

Starburst galaxies

[He+ 13; Yoast-Hull, Gallagher, Zweibel. Everett 13; Murase, Ahlers, Lacki 13]
[Anchordoqui, Paul, da Silva, Torres, Vlcek 14; Tamborra, Ando, Murase 14; Chang & Wang 14]
[Liu, Wang, Inoue, Crocker, Aharonian 14; Senno+ 15]
[Chakraborty & Izaguirre 15; Emig, Lunardini, Windhorst 15; Bechtol+ 15]

Galaxy clusters

[Murase, Ahlers, Lacki 13; Zandanel, Tamborra, Gabici, Ando 14]

▶ ?

(Compilation by M. Ahlers)

Two extragalactic source examples

pp production: starburst galaxies

 $p\gamma$ production: active galactic nuclei

- CR-gas (pp) interactions: broken power-law neutrino spectra
- CR-photon $(p\gamma)$ interactions: spectral features from γ spectrum

Stacking searches

Per-Flavor $E^2 \Phi_{\nu}$ (GeV cm⁻² s⁻¹ sr⁻¹)

 10^{-12}

 10^{-13}

 10^{3}

GRB stacking

 10^{8}

Internal Shock Fireball Prediction

Photospheric Fireball Prediction ICMART Fireball Prediction

807 GRBs (2008-2016)

 10^{4}

3 yr of showers (all flavors) + 4 yr of upgoing tracks > 1 TeV

106

Neutrino energy (GeV)

- Six coincidences, low significance
- $\blacktriangleright \lesssim$ 1% of diffuse flux due to prompt GRB emission

Blazar stacking

- 862 blazars from the 2nd Fermi-LAT AGN catalog (2LAC)
- Blazars emit gamma-rays up to tens of TeV

What about low-luminosity and choked GRBs?

- Low-luminosity and choked GRBs might be in the same family as high-luminosity long GRBs
- Due to lower jet speeds (Γ_b), they do not break out
- They might explain the TeV region of the IceCube diffuse ν flux:

Correlation with UHECRs?

Angular deflection of CRs on extragalactic magnetic field:

$$\theta_{\rm rms} \simeq 1^{\circ} \left(\frac{D}{L_{\rm coh}}\right)^{\frac{1}{2}} \left(\frac{E}{55 \; {\rm EeV}}\right)^{-1} \left(\frac{L_{\rm coh}}{1 \; {\rm Mpc}}\right) \left(\frac{B}{1 \; {\rm nG}}\right)$$

No significant correlation with Auger and Telescope Array data

Identifying extragalactic point sources

How many neutrinos should be correlated with UHECR sources?

- UHECRs trace sources within $\lambda_{\text{GZK}} \approx$ 200 Mpc
- Neutrinos come from anywhere inside Hubble horizon $D_{\rm H} \approx 4~{
 m Gpc}$
- Maximal overlap:

$$rac{\lambda_{
m GZK}}{D_{
m H}}pprox 5\%$$

- ► Current HESE data: ~ 30 signal events
- Expected correlations with 1–2 neutrinos
- Weaker signal due to magnetic deflection, angular resolution, catalog incompleteness, *etc*.

Constraints from the isotropic gamma-ray background

- ▶ *pp* production: ν and gamma-ray spectra follow the CR spectrum $\propto E^{-\Gamma}$
- Interactions of gamma rays with CMB make them pile up in GeV range
- Fermi gamma-ray background satisfied only if Γ ≤ 2.2
- IceCube favors $\Gamma \approx 2.6$
- *pp* production disfavored

AHLERS & MURASE 13

We expect the > PeV ν sky to be populated: cosmogenic neutrinos

They are produced in proton (or nuclei) interactions with CMB photons:

$$\underbrace{p}_{10^{20} \text{ eV}} + \underbrace{\gamma_{\text{CMB}}}_{0.1 \text{ meV}} \rightarrow \underbrace{\nu_{\mu} + \bar{\nu}_{\mu} + \nu_{e}}_{10^{18} \text{ eV}} = \text{EeV}$$

We have not seen them — why are they worth looking for?

- They are sensitive to the UHECR composition (fewer ν 's if nuclei)
- They probe the high-redshift UHECR evolution
- Probe v properties at previously unexplored energies

CMB photons are abundant but UHECRs are much less so

... The cosmogenic neutrino flux is low

How low can low be?

The present-day picture

The latest IceCube search (6 years) found only one candidate event — the most optimistic predictions are disfavored

This limit already disfavors the proton dip model of UHECRs

[HEINZE, BONCIOLI, MB, WINTER, 1512.05988]

Predictions vs. detectors — now

Predictions vs. detectors — now

Predictions vs. detectors — now

Mauricio Bustamante (CCAPP OSU)

Two philosophies:

- 1 Build larger water/ice Cherenkov detectors
 - Pro: the technique is mature (IceCube-Gen2, KM3NeT)
 - Con: unfeasible to cover very large area
- 2 Use more suitable techniques: EAS detection
 - Pro: surface arrays can cover large areas (e.g., Auger, ANITA)
 - Con: limited exposure, technique has not been as developed

Predictions vs. detectors — future

Enter GRAND

Sensitivity to pessimistic scenarios of cosmogenic neutrinos can realistically be achieved only with dedicated EAS detectors

How can the nightmare scenario be overcome?

- 1 Build big. Really big.
- ${f 2}$ Use radio emission attenuation length is \sim 100 km in air

GRAND: Giant Radio Array for Neutrino Detection

- Detects Earth-skimming ν_τ's with 10^{8.5}–10^{11.5} GeV
- Via radio emission of τ-initiated extensive air showers
- $\blacktriangleright~\sim 10^5$ antennas covering $2\times 10^5~km^2$

Building big — comparing the surface areas

Building big — comparing the surface areas

GRAND $(2 \times 10^5 \text{ km}^2)$

Mauricio Bustamante (CCAPP OSU)

GRAND cuts deep

Mauricio Bustamante (CCAPP OSU)

For cosmogenic neutrinos, GRAND is ...

- ... a discovery and precision instrument for optimistic fluxes: 600–1400 events yr⁻¹
- ... a discovery instrument for pessimistic fluxes:
 6–15 events yr⁻¹
- \blacktriangleright ... and a strong-exclusion instrument, if <1 event yr^{-1}

- High-energy (10 TeV 2 PeV) astrophysical neutrinos exist
- IceCube measures spectral shape, arrival directions, flavor composition
- No sources found yet:
 - ► Galactic component: ≤ few 10%
 - Extragalactic component: multi-messenger studies provide clues
- Proposed upgrades (IceCube-Gen2, KM3NeT) will provide more data
- Next frontier: EeV cosmogenic neutrinos
- Promising technology: detection of radio signals from neutrino-induced showers in ice (ARA, ARIANNA) and in air (GRAND)

Summary and outlook

Backup slides

Flavor combinations from std. flavor mixing: NH vs. IH

[MB, BEACOM, WINTER, PRL 115, 1611302 (2015)]

Selected source compositions: NH vs. IH

[MB, BEACOM, WINTER, PRL 115, 1611302 (2015)]

Perfect knowledge of mixing angles: NH vs. IH

[MB, BEACOM, WINTER, PRL 115, 1611302 (2015)]

Energy dependence of the composition at the source

Different ν production channels are accessible at different energies

- TP13: pγ model, target photons from co-accelerated electrons [HÜMMER et al., Astropart. Phys. 34, 205 (2010)]
- Equivalent to different sources types contributing to the diffuse flux
- Will be difficult to resolve

[Kashti, Waxman, *PRL* 95, 181101 (2005)] [Lipari, Lusignoli, Meloni, *PRD* 75, 123005 (2007)]

[MB, BEACOM, WINTER, PRL 115, 1611302 (2015)]

Decay: seeing the energy dependence?

- The effect of decay shows up at low energies
- ► e.g., for a model of AGN cores [HUMMER et al., Astropart. Phys. 34, 205 (2010)],
- Would require high statistics + exquisite energy resolution

[MB, BEACOM, WINTER, PRL 115, 1611302 (2015)]

[MB, BEACOM, WINTER, PRL 115, 1611302 (2015)]

- Current IceCube flavor-ratio contours use all recorded data from astrophysical searches:
 - 1 TeV and above
 - all arrival directions
- A more robust lifetime bound should use a curated data set:
 Only events with arrival directions off the Galactic Plane
 Only events > 100 TeV, to avoid atmospheric contamination
- This would result in a truly extragalactic sample of neutrinos
 where decay can act on cosmological scales

Cosmological effects on decay

There are two cosmological effects:

- **1** Distance as a function of redshift z: L = L(z)
- 2 Adiabatic cosmological expansion:

energy at production $(E) = (1 + z) \cdot \text{energy}$ at detection (E_0)

Fraction of remaining ν_i at Earth:

$$D\left(E_{0}, z, \kappa_{i}^{-1}
ight) = \left(a + be^{-cz}
ight)^{-rac{\kappa_{i}L_{H}}{E_{0}}}$$

 $a \approx 1.71, b = 1 - a, c \approx 1.27$ for ACDM with $(\Omega_m, \Omega_\Lambda) = (0.27, 0.73)$

$$\langle P_{\alpha\beta} \rangle \rightarrow \underbrace{D\left(E_0, z, \kappa_i^{-1}\right)}_{0 < D < 1} \langle P_{\alpha\beta} \rangle$$

[BAERWALD, MB, WINTER, JCAP 1210, 020 (2012)]

- ▶ ν_1 : $\gtrsim 4 \cdot 10^{-3} \text{ s eV}^{-1}$ (solar, Berryman *et al.* 2014)
- ▶ ν_2 : $\gtrsim 7 \cdot 10^{-3}$ s eV⁻¹ (solar, Berryman *et al.* 2014)
- ▶ ν_3 : $\gtrsim 7 \cdot 10^{-11}$ s eV⁻¹ (atmospheric, González-García & Maltoni 2008)

- ν_1 : $\gtrsim 4 \cdot 10^{-3}$ s eV $^{-1}$ (solar, Berryman *et al.* 2014)
- ▶ ν_2 : $\gtrsim 7 \cdot 10^{-3}$ s eV⁻¹ (solar, Berryman *et al.* 2014)
- ▶ ν_3 : $\gtrsim 7 \cdot 10^{-11} \text{ s eV}^{-1}$ (atmospheric, González-García & Maltoni 2008)

- ν_1 : $\gtrsim 4 \cdot 10^{-3}$ s eV $^{-1}$ (solar, Berryman *et al.* 2014)
- ▶ ν_2 : $\gtrsim 7 \cdot 10^{-3}$ s eV⁻¹ (solar, Berryman *et al.* 2014)
- ▶ ν_3 : $\gtrsim 7 \cdot 10^{-11} \text{ s eV}^{-1}$ (atmospheric, González-García & Maltoni 2008)

- ▶ ν_1 : $\gtrsim 4 \cdot 10^{-3} \text{ s eV}^{-1}$ (solar, Berryman *et al.* 2014)
- ▶ ν_2 : $\gtrsim 7 \cdot 10^{-3}$ s eV⁻¹ (solar, Berryman *et al.* 2014)
- ▶ ν_3 : $\gtrsim 7 \cdot 10^{-11} \text{ s eV}^{-1}$ (atmospheric, González-García & Maltoni 2008)

Flavor mixing in high-energy astrophysical neutrinos

Probability of $\nu_{\alpha} \rightarrow \nu_{\beta}$ transition:

$$P_{\alpha\beta} = \delta_{\alpha\beta} - 4\sum_{k>j} \operatorname{Re}\left(U_{\alpha j}U_{\alpha k}^{*}U_{\beta j}U_{\beta k}^{*}\right) \sin^{2}\left(\frac{\Delta m_{k j}^{2}L}{4E}\right) + 2\sum_{k>j} \operatorname{Im}\left(U_{\alpha j}U_{\alpha k}^{*}U_{\beta j}U_{\beta k}^{*}\right) \sin\left(\frac{\Delta m_{k j}^{2}L}{2E}\right)$$

For
$$\begin{cases} E_{\nu} \sim 1 \text{ PeV} \\ \Delta m_{kj}^2 \sim 10^{-4} \text{ eV}^2 \end{cases} \Rightarrow \underbrace{L_{\text{osc}} \sim 10^{-10} \text{ Mpc}}_{\text{high-energy osc. length}} \ll \underbrace{L = 10 \text{ Mpc} - \text{few Gpc}}_{\text{typical astrophysical baseline}}$$

- Therefore, oscillations are very rapid
- They average out after only a few oscillations lengths:

$$\sin^2(\ldots)
ightarrow 1/2 \;,\;\; \sin{(\ldots)}
ightarrow 0$$

Hence, for high-energy astrophysical neutrinos:

 $\langle P_{\alpha\beta} \rangle = \sum_{i=1}^{3} |U_{\alpha i}|^2 |U_{\beta i}|^2$ \blacktriangleleft incoherent mixture of mass eigenstates

New physics: effect on the spectral shape

Secret neutrino interactions between astrophysical neutrinos and the cosmic neutrino background no-interaction Model A 2 $E^{2}J$ [10⁻⁸ GeV cm⁻² s⁻¹ sr⁻¹ Model C Model E $\mathcal{L}\sim oldsymbol{g}\phi
uar{
u}$ Cross section: $\sigma = \frac{g^4}{4\pi} \frac{s}{\left(s - M^2\right)^2 + M^2 \Gamma^2}$ 10^{3} 10^{4} 10^{5} 10^{6} 10^{7} 10^{8} E [GeV] Resonance at $E_{\rm res} = \frac{M^2}{2m}$ [NG & BEACOM, PRD 6, 065035 (2014)] [CHERRY, FRIEDLAND, SHOEMAKER, 1411.1071]

[BLUM, HOOK, MURASE, 1408.3799]

New physics: effect on the flavor composition

Mauricio Bustamante (CCAPP OSU)

Flavor content of the mass eigenstates (I)

- ► ν_i (*i* = 1, 2, 3) contains a fraction of flavor $\alpha = e, \mu, \tau$ given by $|U_{\alpha i}|^2 = |U_{\alpha i} (\theta_{12}, \theta_{23}, \theta_{13}, \delta_{CP})|^2$
- From global fits [GONZÁLEZ-GARCÍA et al. 2014]:

Using the best-fit values:

$$u_{1}:$$
 70% $u_{e},$ 10 $-$ 20% $u_{\mu},$ 10 $-$ 20% $u_{ au}$

 ν_2 : ~ equal proportion of each

$$u_3$$
 : 3% u_e , 40 – 60% u_μ , 40 – 60% $u_ au$

Flavor content of the mass eigenstates (II)

Flavor content for every allowed combination of mixing parameters:

MB, BEACOM, WINTER, PRL 115, 161302 (2015)

Side note: improving the flavor measurements

Late-time light ("echoes") from muon decays and neutron captures can separate ν_{e} -initiated showers from ν_{τ} -initiated showers —

LI, MB, BEACOM, IN PREP.

Standard Model decay modes

SM decay modes are negligible:

• One-photon decay (
$$\nu_i \rightarrow \nu_j + \gamma$$
):

$$au \simeq 10^{36} \left(m_i / \mathrm{eV}
ight)^{-5} ~\mathrm{yr}$$

• Two-photon decay ($\nu_i \rightarrow \nu_j + \gamma + \gamma$):

$$au \simeq 10^{57} \, (m_i/{
m eV})^{-9}$$
 yr

• Three-neutrino decay ($\nu_i \rightarrow \nu_j + \nu_k + \bar{\nu}_k$):

$$au \simeq 10^{55} \left(\textit{m}_{i}/\text{eV}
ight)^{-5}$$
 yr

$\label{eq:alpha} \begin{array}{l} \mbox{All lifetimes} \gg \mbox{age of Universe} \\ - \mbox{therefore, it is hopeless to look for effects of SM decay channels} \end{array}$

Mauricio Bustamante (CCAPP OSU)

Models beyond the SM may introduce new decay modes:

 $\nu_i \rightarrow \nu_j + \phi$

- ϕ : Nambu-Goldstone boson of a broken symmetry
- ► *e.g.*, Majoron in lepton number violation via neutrino mass [CHIKASHIGE *et al.* 1980, GELMINI *et al.* 1982]
- ► Bounds from 0νββ decay and supernovae [Tomas *et al.* 2001], and precision CMB measurements [Hannestad & RAFFELT 2005]
- We work in a model-independent way
 - nature of ϕ unimportant as long as invisible to neutrino detectors

Decay fundamentals

- A neutrino source emits known numbers of ν_1, ν_2, ν_3
- En route, they decay via

$$\underbrace{\nu_2, \nu_3 \to \nu_1}_{\nu_2, \nu_3 \to \nu_1}$$

normal mass hierarchy (NH)

$$\underbrace{\nu_1,\nu_2\to\nu_3}_{}$$

inverted mass hierarchy (IH)

• At time t (= baseline L), the fraction of surviving unstable ν_i 's is

$$\frac{N_{i}\left(L\right)}{N_{i,\text{emit}}} = \exp\left[-\left(\frac{m_{i}}{\tau_{i}}\right)\left(\frac{L}{E_{\nu}}\right)\right] \equiv \exp\left[-\frac{L}{L_{\text{dec}}}\right]$$

or

▲ For very long L. m_i , τ_i are the mass and (rest-frame) lifetime of ν_i this will have redshift corrections

Neutrinos with known L and E_µ are sensitive to "lifetimes" of

$$\kappa^{-1} \left[rac{\mathbf{s}}{\mathbf{eV}}
ight] \equiv rac{ au \left[\mathbf{s}
ight]}{m \left[\mathbf{eV}
ight]} \lesssim 10^2 \; rac{L \left[\mathsf{Mpc}
ight]}{E_{
u} \left[\mathsf{TeV}
ight]}$$

Seeing decay in the flavor fluxes

► Diffuse v + v̄ flux from population of generic sources, normalized to IceCube flux

• Assuming
$$(f_{e,S}:f_{\mu,S}:f_{\tau,S}) = \left(\frac{1}{3}:\frac{1}{3}:\frac{1}{3}\right)$$

- Fixed lifetime of 10 s eV⁻¹
- Decay NH: $\nu_2, \nu_3 \rightarrow \nu_1$
 - ν_µ, ν_τ depleted
 - ν_e doubled (2 × *e* flavor in ν_1 than in ν_2)
- Decay IH: $\nu_1, \nu_2 \rightarrow \nu_3$
 - ν_{μ}, ν_{τ} enhanced slightly
 - ν_e greatly depleted (little *e* flavor in ν_3)

[MB, BEACOM, MURASE, IN PREP.]

Is complete decay allowed by IceCube?

Overlay the IceCube flavor-ratio contours on the flavor-content regions:

Is complete decay allowed by IceCube?

Overlay the IceCube flavor-ratio contours on the flavor-content regions:

Is complete decay allowed by IceCube?

Overlay the IceCube flavor-ratio contours on the flavor-content regions:

Let us calculate the lifetime bounds in the NH case >

Find the value of *D* so that decay is complete, *i.e.*, $f_{\alpha,\oplus} = |U_{\alpha 1}|^2$, for

- Any value of mixing parameters; and
- Any flavor ratios at the sources

Mixing + decay No decay θ_{ii}, δ_{CP} : var. 3σ 0.9 NH 0.2 30 0.8 0.3 0.7 0.4 0.6 0.5 *f*_{τ,⊕}_{0.6} 0.5 f_{μ,⊕} 0.4 0.7 0.3 0.8 0.2 ceCube 2015 0.9 0.1 - 0 0.5 02 03 0.6 0.7 0.8 04 0.9 f_{e.⊕}

Assume equal lifetimes of ν_2 , ν_3

Find the value of *D* so that decay is complete, *i.e.*, $f_{\alpha,\oplus} = |U_{\alpha 1}|^2$, for

- Any value of mixing parameters; and
- Any flavor ratios at the sources

Mixing + decay No decay D = 0.75 θ_{ii}, δ_{CP} : var. 3σ 0.9 NH 0.2 30 0.8 0.3 0.7 0.4 0.6 0.5 *f*_{τ,⊕}_{0.6} 0.5 f_{μ,⊕} 04 0.7 0.3 0.8 0.2 ceCube 2015 0.9 0.1 - 0 02 03 0.5 0.6 0.7 0.8 04 0.9 f_{e.⊕}

Assume equal lifetimes of ν_2 , ν_3

Find the value of *D* so that decay is complete, *i.e.*, $f_{\alpha,\oplus} = |U_{\alpha 1}|^2$, for

- Any value of mixing parameters; and
- Any flavor ratios at the sources

Assume equal lifetimes of ν_2 , ν_3

Find the value of *D* so that decay is complete, *i.e.*, $f_{\alpha,\oplus} = |U_{\alpha 1}|^2$, for

- Any value of mixing parameters; and
- Any flavor ratios at the sources

Assume equal lifetimes of ν_2 , ν_3

Find the value of *D* so that decay is complete, *i.e.*, $f_{\alpha,\oplus} = |U_{\alpha 1}|^2$, for

- Any value of mixing parameters; and
- Any flavor ratios at the sources

Assume equal lifetimes of ν_2 , ν_3

Find the value of *D* so that decay is complete, *i.e.*, $f_{\alpha,\oplus} = |U_{\alpha 1}|^2$, for

- Any value of mixing parameters; and
- Any flavor ratios at the sources

Assume equal lifetimes of ν_2 , ν_3

$D \lesssim 0.01$ implies a bound of $\kappa_{2.3}^{-1} \gtrsim 10$ s eV⁻¹ at $\gtrsim 2\sigma$

Normal hierarchy (active only; v₁ stable)

What will higher-energy events do for us?

Above 5 PeV, IceCube might see flavor-specific signatures:

What will higher-energy events do for us?

Above 5 PeV, IceCube might see flavor-specific signatures:

What will higher-energy events do for us?

Above 5 PeV, IceCube might see flavor-specific signatures:

New physics — active-sterile mixing

Mixing with a sterile neutrino (3+1) changes the flavor ratios:

- standard parameters: θ_{12} , θ_{23} , θ_{13} , δ_{13}
- sterile parameters: θ_{14} , θ_{24} , θ_{34} , δ_{24} , δ_{34}

New physics — active-sterile mixing

Mixing with a sterile neutrino (3+1) changes the flavor ratios:

- standard parameters: θ_{12} , θ_{23} , θ_{13} , δ_{13}
- sterile parameters: θ_{14} , θ_{24} , θ_{34} , δ_{24} , δ_{34}

SUSY renormalization group running

- The MSSM introduces loop corrections in the v interaction vertices
- ▶ Renormalization scale $\mu = Q = \sqrt{-q^2}$ (transferred momentum)
- Two energy scales:

[MB, GAGO, JONES, JHEP 05, 133 (2011) [1012.2728]]

- At production: $Q = m_{\pi}$
- At detection (via ν -nucleon): $Q \propto \sqrt{E_{\nu}}$
- RG running between the scales changes the mixing probability:

New physics — high-energy effects (I)

Add a new-physics term to the standard oscillation Hamiltonian:

$$H_{\rm tot} = H_{\rm std} + H_{\rm NP}$$

$$H_{\text{std}} = \frac{1}{2E} U_{\text{PMNS}}^{\dagger} \operatorname{diag} \left(0, \Delta m_{21}^{2}, \Delta m_{31}^{2} \right) U_{\text{PMNS}}$$
$$H_{\text{NP}} = \sum_{n} \left(\frac{E}{\Lambda_{n}} \right)^{n} U_{n}^{\dagger} \operatorname{diag} \left(O_{n,1}, O_{n,2}, O_{n,3} \right) U_{n}$$

n=1

n = 0

- coupling to a torsion field
- CPT-odd Lorentz violation

- equivalence principle violation
- CPT-even Lorentz violation

 $\begin{array}{l} \mbox{Experimental upper bounds from atmospheric ν's:} \\ O_0 \lesssim 10^{-23} \mbox{ GeV} \qquad O_1/\Lambda_1 \lesssim 10^{-27} \mbox{ GeV} \end{array}$

[ARGÜELLES, KATORI, SALVADÓ, *PRL* **115**, 161303 (2015)] [MB, GAGO, PENA-GARAY, *JHEP* **1004**, 005 (2010)] [ICECUBE COLL., *PRD* **82**, 112003 (2010)] [SUPER-K COLL., *PRD* **91**, 052003 (2015)]

New physics — high-energy effects (II)

Truly exotic new physics is indeed able to populate the white region:

use current bounds on O_{n,i}

[ARGÜELLES, KATORI, SALVADÓ PRL 115, 161303 (2015)]

sample the unknown NP mixing angles

