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STATISTICAL MECHANICS OF 
FRICTIONAL ATHERMAL SYSTEMS ?  

Edwards  
Hypothesis: All packings where grains 

occupy the same volume are 
equiprobable  

Assumption: change of configuration due to 
‘’extensive operations’’ guarantees ‘’ergodicity’’ 
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TEST OF EDWARDS ASSUMPTION: TAPPING 
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HARMONIC CHAIN WITH DRY FRICTION 

- TAPPING DYNAMICS 

- BLOCKED CONFIGURATIONS 

- RELEVANT OBSERVABLES 

- DEFINITION OF THE EFFECTIVE THEORY 

- PREDICTIONS EFFECTIVE THEORY 

- COMPARISON BETWEEN  EFFECTIVE 
THEORY AND DRIVEN ATHERMAL DYNAMICS 

True 
Dynamics 

Effective 
Thermodynamics 

Viscous friction 
- RESULTS OF SIMULATIONS 

- FIELD THEORETIC APPROACH 



HARMONIC CHAIN WITH DRY (Coulomb) FRICTION 

-Equations of motion (dynamic friction) 

|(xi+1 + xi�1 � 2xi + F (t))| > µ mg

-Condition to start moving (static friction) 

Dynamic friction: energy dissipation External Force: energy gain 

m ẍi = �mgµd sgn(ẋi) + (xi+1 + xi�1 � 2xi) + Fi(t)

ẋi

mgµd

dynamic friction coefficient 
static friction coefficient Harmonic springs 

µd = 0.5
µ = 0.6

ẋi = 0
ẋi > 0



TAPPING DYNAMICS 

1) External force switched on for a fixed duration t: energy injection 

m ẍi = �mgµd sgn(ẋi) + (xi+1 + xi�1 � 2xi) + F ni

2) External force switched off: relaxation to a MECHANICALLY 
STABLE configuration with all particles are at rest (absorbing state) 

m ẍi = �mgµd sgn(ẋi) + (xi+1 + xi�1 � 2xi)
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Energy of the mechanically 
stable configurations 

Spring elongation 
|xi+1 + xi�1 � 2xi| < µmg

Dynamics is arrested 
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ni ⇢ < 1Not all the particles are pulled ! 



Heating Quench Heating Quench 

HARMONIC CHAIN WITH DRY (Coulomb) FRICTION 

After few cycles the energy of blocked configurations fluctuates around a stationary value 

F > 0 F = 0

Mechanically stable 
configuration 

Mechanically stable 
configuration 

Energy of mechanically stable configurations (N=256) 
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SPRING-SPRING CORRELATION  
(IN MECHANICALLY STABLE CONFIGURATIONS) 

Spring-spring correlation  
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as the energy stored by the springs 
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‘’Given a certain situation attained dynamically, physical observables are obtained by 
averaging over the usual equilibrium distribution at the corresponding volume, energy, etc. 
but restricting the sum to ‘blocked’ configurations.’’   

EFFECTIVE THERMODYNAMICS ‘’Á LA EDWARDS’’  
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2

Mechanical stability F(⇠) = 0

⇠ = {⇠1, . . . , ⇠N} Springs elongations 

(Barrat, Kurchan, Loreto, Sellitto, PRL, 2000) 
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EFFECTIVE THERMODYNAMICS ‘’À LA EDWARDS’’  

T [f ](x) =

Z 1

�1
dy T (y, x)f(x)Transfer Operator Formalism  

Z =

Z
d⇠1 . . . d⇠N e��Ed

PN
i=1

⇠2i
2

NY

i=1

⇥(µ� |⇠i+1 � ⇠i|)

⇠i ⇠i+1

xi

T (x, y) = e

��
Ed

x

2

4 ⇥(µ� |x� y|)e��
Ed

y

2

4

Z =

Z
d⇠1 . . . d⇠N T (⇠1, ⇠2) . . . T (⇠N , ⇠1) = Tr(T N )



‘’THERMODYNAMIC’’ POTENTIALS  
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Transfer operator is well behaved:  
complete spectrum of eigenvalues and eigenvectors 
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SMOOTHENING OF THE DRY FRICTION CONSTRAINT 
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Explicit expressions become available 

Transfer Operators exact result 



GAUSSIAN APPROXIMATION: 
 CORRELATION FUNCTION 
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Correlations appear in the  
‘’out-of-equilibrium’’ regime 
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Blocked configurations 
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DRIVEN ATHERMAL 
DYNAMICS 

EFFECTIVE 
THERMODYNAMICS 

G. Gradenigo, E. Ferrero, E. Bertin, J.-L. Barrat,  Phys. Rev. Lett.  115, 140601 (2015) 
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Edwards effective theory 
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GAUSSIAN APPROXIMATION 
Field-theoretic description 

Energy Dry friction (smooth) constraint 

Continuum limit 
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Mechanically stable configuration = Trajectories 
(of a fictitious stochastic process) 
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Typical configurations ‘’are generated’’ by a Langevin equation with white noise 
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Partition sum 
(Field-theory) 

Sum over path probabilities 
(Langevin equation) 

L =
@

@x

+ µ

p
�Ed

(1)

(2)

(1)(2)

spring elongation ⇠ () space variable

‘’	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ‘’	  

spring position x () time variable

‘’	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ‘’	  



�

2(x) = h(⇠(x)� ⇠(0))2i

Mean square displacement of 
spring elongation along the chain 

in a mechanically stable 
configuration 
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Mean square displacement (MSD) of spring elongations  
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- Numerical data from Mechanically Stable Configurations at different energies 
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Viscous friction: Deviation from the Edwards theory !! 
m ẍi = ��ẋi �mgµd sgn(ẋi) + (⇠i+1

� ⇠i) + F

ext

i (t)

Iso-energetic mechanically stable  
configurations have identical probability Edwards `(e) ⇠ e

 10

 100

 0.1  1  10  100  1000

λ(
e)

e

e

e
1/2

γ = 0.3

γ = 0.2

γ = 0.1

γ = 0.05

γ = 0.025

γ = 0.01

γ = 0

`(e)



10
-3

10
-2

10
-1

1

10

10
-2

10
-1 1 10

<
 σ

2
( 

x
 /

 λ
) 

>
 /

 e

 x / λ

x
2

λ = 13

30

38

45

55

60

69

88

99

Langevin equation with COLOURED noise 
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Non-local field theory for the mechanically stable 
configurations sampled with viscous (+dry) friction 
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CONCLUSIONS 

- We presented a 1D model with dry friction where the effective 
thermodynamics  à la Edwards works very well: transfer operator 
techniques, gaussian approximation of the constraint  

- Uniform Edwards theory works well for dry friction: iso-energetic 
mechanically stable configurations are sample with identical probability 

-  What about viscous friction? Non-uniform Edwards theory!  

-  What about viscous friction? Non-local field theory, coloured noise 
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PERSPECTIVES 

- Transfer operator approach on the tree-like random graph 
(cavity equations)  
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PERSPECTIVES	  

-‐	  Study	  of	  non-‐linear	  springs	  	  	  (1D)	  
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Tapping	  dynamics	  

Effec8ve	  theory	  

Gaussian	  approxima8on:	  very	  well	  known	  field	  theory	  
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The operator (real, symmetric kernel) has an orthonormal basis 

T [fb](x) = �bfb(x)

Z 1

�1
fb(x)fa(x) = �a,b

CORRELATION FUNCTION 
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ENTROPY	  
Non-‐interac9ng	  springs	  approxima9on	  

Marginal	  distribu8on	   p(⇠) = Z�1
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SCALINGS	  
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Fluctua8ons	  of	  chain	  length	  
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SPRING-‐LENGHT	  PROBABILITY	  
DISTRIBUTIONS	  
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PROBABILITY	  DISTRIBUTION	  OF	  FORCE	  
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Number	  of	  blocked	  structures	  in	  fric8onal	  
granular	  assemblies	  at	  given	  Volume	  

Number	  of	  energy	  minima	  in	  
models	  of	  glasses	  at	  given	  Energy	  
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Edwards’ Measures for Powders and Glasses
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Can one construct a thermodynamics for compact, slowly moving powders and grains? A few years
ago, Edwards proposed a possible step in this direction, raising the fascinating perspective that such
systems have a statistical mechanics of their own, different from that of Maxwell, Boltzmann, and Gibbs,
allowing us to have some information while still ignoring dynamic details. Recent developments in the
theory of glasses have come to confirm these ideas within mean field. In order to go beyond, we explicitly
generate Edwards’ measure in a 3D model. Comparison of the results with the irreversible compaction
data shows very good agreement. The present framework immediately suggests new experimental checks.

PACS numbers: 05.70.Ln, 05.20.–y, 45.70.Cc, 64.70.Pf

The classical way to go from the microscopic dynam-
ics to statistical mechanics proceeds in two steps: one first
identifies a distribution that is left invariant by the dynam-
ics (e.g., the microcanonical ensemble), and then assumes
that this distribution will be reached by the system, under
suitable conditions of “ergodicity.” For granular systems
this approach seems doomed from the outset: because en-
ergy is lost through internal friction, and gained by a non-
thermal source such as tapping or shearing, the dynamical
equations do not leave the microcanonical or any other
known ensemble invariant. Moreover, the compaction dy-
namics is extremely slow and does not approach any sta-
tionary state on experimental time scales. This raises the
question of characterizing the typical configurations or the
region of phase space visited dynamically.

The proposal of Edwards and collaborators [1–3] is to
use an alternative distribution for very gently vibrated or
sheared granular systems, with the static situation as a lim-
iting case. It may be summarized as follows: given a cer-
tain situation attained dynamically, physical observables
are obtained by averaging over the usual equilibrium dis-
tribution at the corresponding volume, energy, etc., but re-
stricting the sum to the “blocked” configurations defined
as those in which every grain is unable to move. This
definition leads immediately to an entropy (in the glass
literature a “complexity”) Sedw, given by the logarithm of
the number of blocked configurations of given volume, en-
ergy, etc., and its corresponding density sedw ! Sedw"N .
Associated with this entropy are the state variables such
as “compactivity” X21

edw ! ≠
≠V Sedw#V $ and “temperature”

T21
edw ! ≠

≠E Sedw#E$.
That configurations with low mobility should be relevant

in a jammed situation is rather obvious; the strong assump-
tion here is that, apart from the usual statistical weights,
all blocked configurations are treated as equivalent—any
extra weight of dynamical origin that might distinguish
them is disregarded. The purpose of this Letter is to argue

that this “flatness” assumption characterizing Edwards’
distributions is neither capricious (it leads to correct pre-
dictions for the compaction dynamics of a given class of
systems) nor obvious (it does not apply to other classes
of systems). To do this we devise a method to count the
blocked configurations and compute averages over them.

Let us briefly summarize the state of the art. A first clue
comes from exploiting the analogy between the settling
of grains and powders, as when we gently tap a jar with
flour to make space for more, and the aging of glassy
systems [4–6]: in both cases, the system remains out of
equilibrium on all accessible time scales, and displays very
slow relaxations.

In the late 1980s, Kirkpatrick et al. [7,8] recognized
that a class of mean-field models contains, although in
a rather schematic way, the essentials of glassy phe-
nomena. When the aging dynamics of these systems
was solved analytically, a feature that emerged was the
existence of a temperature Tdyn for all the slow modes
(corresponding to structural rearrangements) [9,10]. For
our purposes here, Tdyn can be defined by comparing the
random diffusion and the mobility between two widely
separated times t and tw of any particle or tracer in the
aging glass. Surprisingly, one finds in all cases an Einstein
relation %###r#t$ 2 r#tw$$$$2& ! Tdyn

d%r#t$2r#tw $&
df , where r is

the position of the particle and f is a constant perturbing
field. While in an equilibrium system the fluctuation-
dissipation theorem guarantees that the role of Tdyn is
played by the thermodynamic temperature, the appearance
of such a quantity out of equilibrium is by no means
obvious. Tdyn is different from the external temperature,
but it can be shown to have all other properties defining a
true temperature [10].

As it turned out, despite its very different origin, this
temperature matches exactly Edwards’ ideas: Tedw and
Tdyn happen to coincide for mean-field glass models aging
in contact with an almost zero temperature bath [11–15].
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Possible Test of the Thermodynamic Approach to Granular Media

David S. Dean and Alexandre Lefèvre
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118 Route de Narbonne, 31062 Toulouse CEDEX 04, France
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We study the steady state distribution of the energy of the Sherrington-Kirkpatrick model driven by a
tapping mechanism which mimics the mechanically driven dynamics of granular media. The dynamics
consists of two phases: a zero temperature relaxation phase which leads the system to a metastable state,
then a tapping which excites the system thus reactivating the relaxational dynamics. Numerically, we
investigate whether the distribution of the energies of the blocked states obtained agrees with a simple
canonical form of the Edwards measure. It is found that this canonical measure is in good agreement
with the dynamically measured energy distribution. A possible experimental test of the Edwards
measure based on the study here is proposed.

DOI: 10.1103/PhysRevLett.90.198301 PACS numbers: 81.05.Rm, 05.20.–y, 75.10.Nr

Complex systems such as granular media possess a
large number of metastable or blocked configurations.
When a granular medium is shaken, it quickly relaxes
into a blocked configuration, a subsequent shake or tap
will lead it to another blocked or jammed state, and so on.
If the driving mechanism is held constant, one expects
the system to enter into a quasiequilibrium stationary
state. Various driving mechanisms can be investigated
experimentally, such as vertical tapping [1] and horizon-
tal shaking [2]. In granular media and other complex
systems such as spin glasses, the entropy of these blocked
states is extensive in the system size. Hence, it has been
proposed that one may use a thermodynamic measure
over blocked states to describe this steady state. The
simplest proposition is that the system is characterized
by a number of quantities which are fixed on average, and
then the measure on the steady state is obtained from the
maximum entropy state (on blocked states) with the
relevant macroscopic quantities fixed [3]. This simple
idea has recently been investigated in a wide range of
systems and has been shown to be relatively successful.
Various tests of the applicability of these thermodynamic
ideas have been carried out and, although some confir-
mation has been made in more realistic sheared granular
systems [4], most work has been carried out on simpler
model systems which one hopes capture the basic physics
of granular media. The Edwards flat measure has been
shown to be of predictive value in some simple one-
dimensional lattice models [5,6], but there are clearly
examples where the approach fails [7]. However, recently
it was shown that more sophisticated versions of the
Edwards measure introducing ensembles with several
quantities fixed on average can remedy the deficiencies
of the basic measure in these cases [8]. Other toy models
that have been analyzed are lattice based models with
kinetic constraints in higher dimensions [9,10] and also
spin glass models [11] where nonthermal driving is used
to move the system between blocked states.

Even if it is not expected to be exact, many systems
may be described to a good engineering level by these
measures. Given the difficulty of the analysis of the
highly nonlocal dynamics in these systems, this is an
important step toward understanding their steady state
regimes. There is no clear ergodicity in these systems and
no detailed balance as in usual statistical mechanics.
Edwards argued that a system might conceivably explore
blocked configurations in a flat manner if the driving
involved extensive manipulations, meaning the displace-
ment of a macroscopic number of particles, for example,
shaking, stirring, or pouring granular media. An inter-
esting consequence of the applicability of thermody-
namic ideas is that one may describe phase transitions
in these driven systems [12]. However, even considering
the success of the Edwards measure in describing various
simple models, evidence in realistic granular media is
still lacking. In this Letter, we investigate whether, at a
fixed tapping rate (to be defined later), the states explored
dynamically obey a form of Boltzmann distribution. The
results presented here are quite striking; despite a lack of
detailed balance we shall see that a Boltzmann distribu-
tion excellently describes the histogram of the energies of
the blocked states visited during the tapping. Motivated
by these results, we propose a generic and simple experi-
mental test of the Edwards measure, which should be
feasible in a wide range of driven granular systems.

As mentioned above, a good theoretical and numerical
testing ground for this thermodynamic approach to
granular media are spin glasses. The definition of a
blocked state in a spin glass simulated on a computer
depends, of course, on the local dynamics. Under single
spin flip dynamics, a metastable state is one where flip-
ping any single spin increases the energy; it is thus a
blocked state under any single spin flip Monte Carlo
dynamics. Various spin glass models have been studied
to explore the accuracy of the Edwards measure as a
function of the relaxational dynamics and the tapping
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- Same test on one-dimensional Kinetically Constrained Models 

- Disagreement between dynamical averages and Edwards effective theory 
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