Effective thermodynamics for a driven athermal system with dry and viscous friction

Giacomo Gradenigo

In collaboration with: E. Bertin, E. Ferrero, J.-L. Barrat

CPTGA, LAPTh, Annecy le vieux, 12-05-2016

STATISTICAL MECHANICS OF FRICTIONAL ATHERMAL SYSTEMS ?

Grains with \longrightarrow Dissipation $\longrightarrow e$

Edwards Hypothesis: All packings where grains occupy the same volume are equiprobable

Assumption: change of configuration due to "extensive operations" guarantees "ergodicity"

$$C = (\mathbf{x}_1, \phi_1, \dots, \mathbf{x}_N, \phi_N)$$
$$S = \log \int \mathcal{DC} \ \delta(V - \mathcal{W}(C))$$

S.F Edwards, C.C. Mounfield, Physica A (210), 1994

$$\frac{1}{T} = \frac{\partial S}{\partial E} \implies \frac{1}{X} = \frac{\partial S}{\partial V}$$

Compactivity

TEST OF EDWARDS ASSUMPTION: TAPPING

HARMONIC CHAIN WITH DRY FRICTION

HARMONIC CHAIN WITH DRY (Coulomb) FRICTION

$$m \ddot{x}_{i} = -mg\mu_{d} \operatorname{sgn}(\dot{x}_{i}) + (x_{i+1} + x_{i-1} - 2x_{i}) + F_{i}(t)$$
Dynamic friction: energy dissipation
External Force: energy gain

-Condition to start moving (static friction)

$$\dot{x}_i = 0 (x_{i+1} + x_{i-1} - 2x_i + F(t)) | > \mu \ mg$$
 $\longrightarrow \dot{x}_i > 0$

TAPPING DYNAMICS

1) External force <u>switched on</u> for a fixed duration t: energy injection $m \ddot{x}_i = -mg\mu_d \operatorname{sgn}(\dot{x}_i) + (x_{i+1} + x_{i-1} - 2x_i) + F n_i$ Not all the particles are pulled ! $\rho = \frac{1}{N} \sum_{i=1}^N n_i \quad \rho < 1$

2) External force <u>switched off</u>: relaxation to a **MECHANICALLY STABLE** configuration with all particles are at rest (absorbing state)

$$m \ddot{x}_i = -mg\mu_d \operatorname{sgn}(\dot{x}_i) + (x_{i+1} + x_{i-1} - 2x_i)$$

Dynamics is arrested

$$\dot{x}_i = 0 \quad \forall i$$
$$|x_{i+1} + x_{i-1} - 2x_i| < \mu mg$$

$$e = \frac{1}{N} \sum_{i=1}^{N} \frac{\xi_i^2}{2}$$

Energy of the mechanically stable configurations

 $\xi_i = x_i - x_{i-1} - \ell_0$ Spring elongation

HARMONIC CHAIN WITH DRY (Coulomb) FRICTION

After few cycles the energy of blocked configurations fluctuates around a stationary value

EFFECTIVE THERMODYNAMICS "Á LA EDWARDS"

"Given a certain situation attained dynamically, physical observables are obtained by averaging over the *usual equilibrium distribution* at the corresponding volume, energy, etc. but restricting the sum to 'blocked' configurations." (Barrat, Kurchan, Loreto, Sellitto, PRL, 2000)

$$\boldsymbol{\xi} = \{\xi_1, \dots, \xi_N\}$$
 Springs elongations
$$\int \mathcal{D}\boldsymbol{\xi} \ e^{-\beta_{\mathrm{Ed}}E[\boldsymbol{\xi}]} \ \delta(\mathcal{F}[\boldsymbol{\xi}])$$

Mechanical stability $\mathcal{F}(\boldsymbol{\xi}) = 0$

$$E[\boldsymbol{\xi}] = \sum_{i=1}^{N} \frac{\xi_i^2}{2} \qquad \beta_{\text{Ed}} = \left[\frac{\partial S}{\partial E}\right]_{\mathcal{F}(\boldsymbol{\xi})=0}$$

EFFECTIVE THERMODYNAMICS "À LA EDWARDS"

$$\mathcal{Z} = \int d\xi_1 \dots d\xi_N \ e^{-\beta_{Ed} \sum_{i=1}^N \frac{\xi_i^2}{2}} \ \prod_{i=1}^N \Theta(\mu - |\xi_{i+1} - \xi_i|)$$

$$T(x,y) = e^{-\beta_{Ed} \frac{x^2}{4}} \Theta(\mu - |x - y|) e^{-\beta_{Ed} \frac{y^2}{4}}$$

$$\mathcal{Z} = \int d\xi_1 \dots d\xi_N \ T(\xi_1, \xi_2) \dots T(\xi_N, \xi_1) = \operatorname{Tr}(\mathcal{T}^N)$$

Transfer Operator Formalism

$$\mathcal{T}[f](x) = \int_{-\infty}^{\infty} dy \ T(y, x) f(x)$$

"THERMODYNAMIC" POTENTIALS

$$\mathcal{T}[f](x) = \int_{-\infty}^{\infty} dy \ T(y, x) f(x)$$

$$T(x,y) = e^{-\beta_{Ed}\frac{x^2}{4}}\Theta(\mu - |x - y|)e^{-\beta_{Ed}\frac{y^2}{4}}$$

Transfer operator is well behaved: complete spectrum of eigenvalues and eigenvectors

$$f(\beta_{Ed}, \mu) = -\frac{1}{\beta_{Ed}N} \log(\mathcal{T}^N)$$
$$f(\beta_{Ed}, \mu) = -\frac{1}{\beta_{Ed}} \log[\lambda_{\max}(\beta_{Ed}, \mu)]$$

$$e = \partial_{\beta_{Ed}}(\beta_{Ed}f) \qquad e = -\lambda_{\max}^{-1} \langle \lambda_{\max} | \partial_{\beta_{Ed}} \mathcal{T} | \lambda_{\max} \rangle$$

SMOOTHENING OF THE DRY FRICTION CONSTRAINT

$$\Theta(\mu - |x - y|) \sim \frac{1}{\sqrt{\pi}} \exp\left(-\frac{|x - y|^2}{4\mu^2}\right)$$

$$\mathcal{Z} = \int d\xi_1 \dots d\xi_N \quad \exp\left[-\boldsymbol{\xi} \cdot A\boldsymbol{\xi}\right]$$

Explicit expressions become available

GAUSSIAN APPROXIMATION: CORRELATION FUNCTION

$$\langle \xi_i \xi_j \rangle = 2 \ e(\mu_{\rm s}, T_{\rm Ed}) \ \exp\left(-\frac{|i-j|}{\ell(\mu_{\rm s}, T_{\rm Ed})}\right)$$

EFFECTIVE THERMODYNAMICS

$$\mathcal{Z} = \int_{\boldsymbol{\xi} \in \text{blocked}} \mathcal{D}\boldsymbol{\xi} \ e^{-\beta_{Ed} E[\boldsymbol{\xi}]}$$

Blocked configurations

$$\langle \xi_i \xi_j \rangle \sim C\left(\frac{|i-j|}{\ell(e)}\right)$$

 $\ell(e) \sim e$

$$\langle \xi_i \xi_j \rangle \sim \exp\left(-\frac{|i-j|}{\ell(e)}\right)$$

 $\ell(e) \sim e$

G. Gradenigo, E. Ferrero, E. Bertin, J.-L. Barrat, Phys. Rev. Lett. 115, 140601 (2015)

GAUSSIAN APPROXIMATION Field-theoretic description

Edwards effective theory
$$\mathcal{Z} = \int \mathcal{D}\boldsymbol{\xi} \ e^{-S(\boldsymbol{\xi})}$$
$$S(\boldsymbol{\xi}) = \frac{1}{2} \left[\beta_{\text{Ed}} \sum_{i=1}^{N} \xi_i^2 + \frac{1}{2\mu_s^2} \sum_{i=1}^{N} (\xi_{i+1} - \xi_i)^2 \right]$$
Energy Dry friction (smooth) constraint

Continuum limit

$$\begin{aligned} \xi_i &\to \xi(x) \\ \xi_{i+1} - \xi_i &\to \frac{\partial \xi(x)}{\partial x} \end{aligned} \qquad m^2 = 2\mu_{\rm s}^2 \beta_{\rm Ed} \\ S(\boldsymbol{\xi}) &\sim \int dx \left[\frac{1}{2} \left(\frac{\partial \xi(x)}{\partial x} \right)^2 + \frac{1}{2} m^2 \xi^2(x) \right] \end{aligned}$$

GAUSSIAN APPROXIMATION Field-theoretic description

Edwards effective theory

$$\mathcal{Z} = \int \mathcal{D}\boldsymbol{\xi} \ e^{-S(\boldsymbol{\xi})}$$

$$\langle \xi(x)\xi(y)\rangle \sim e^{-m|x-y|}$$

$$\ell \sim \sqrt{T_{\rm Ed}}$$

Continuum limit

 $\begin{aligned} \xi_i &\to \xi(x) \\ \xi_{i+1} - \xi_i &\to \frac{\partial \xi(x)}{\partial x} \end{aligned} \qquad m^2 = 2\mu_{\rm s}^2 \beta_{\rm Ed} \\ S(\boldsymbol{\xi}) &\sim \int dx \left[\frac{1}{2} \left(\frac{\partial \xi(x)}{\partial x} \right)^2 + \frac{1}{2} m^2 \xi^2(x) \right] \end{aligned}$

Mechanically stable configuration = Trajectories (of a fictitious stochastic process)

Partition sum $\mathcal{Z} =$

$$= \int \mathcal{D}\xi \exp\left(-\int dx \left[\frac{1}{2\mu^2} \left(\frac{\partial\xi}{\partial x}\right)^2 + \frac{\beta_{\rm Ed}}{2}\xi^2(x)\right]\right) \quad (1)$$

spring elongation $\xi \iff$ "space variable" spring position $x \iff$ "time variable"

Typical configurations "are generated" by a Langevin equation with white noise

$$\frac{d\xi}{dx} = -\mu\sqrt{\beta_{\rm Ed}} \ \xi(x) + \eta(x) \quad \langle \eta(x)\eta(y)\rangle = \Gamma(x,y) = 2\mu^2\sqrt{2\pi} \ \delta(x-y)$$

Sum over path probabilities (Langevin equation) (2) \leftarrow Partition sum (Field-theory) (1)

$$\mathcal{Z} = \int \mathcal{D}\xi \exp\left(-\int dx \, dy \, L\xi(x) \, \Gamma^{-1}(x-y) \, L\xi(y)\right) \quad (2)$$
$$L = \frac{\partial}{\partial x} + \mu \sqrt{\beta_{\rm Ed}}$$

Mean square displacement (MSD) of spring elongations

Viscous friction: Deviation from the Edwards theory !! $m \ddot{x}_i = -\gamma \dot{x}_i - mg\mu_d \operatorname{sgn}(\dot{x}_i) + (\xi_{i+1} - \xi_i) + F_i^{\operatorname{ext}}(t)$

Iso-energetic mechanically stable configurations have identical probability

MSD of spring elongations with viscous friction

Langevin equation with COLOURED noise

$$\frac{d\xi}{dx} = -\mu\sqrt{\beta_{\rm Ed}} \ \xi(x) + \eta(x)$$

$$\langle \eta(x)\eta(y)\rangle = \Gamma(x,y) = 2\mu^2\sqrt{2\pi} \ \delta(x-y) + \frac{D_{\rm col}}{\tau} e^{-|x-y|/\tau}$$

Langevin equation with COLOURED noise

$$\frac{d\xi}{dx} = -\mu\sqrt{\beta_{\rm Ed}} \ \xi(x) + \eta(x)$$

$$\langle \eta(x)\eta(y)\rangle = \Gamma(x,y) = 2\mu^2\sqrt{2\pi} \ \delta(x-y) + \frac{D_{\rm col}}{\tau} e^{-|x-y|/\tau}$$
Sum over path probabilities
$$\mathcal{Z} = \int \mathcal{D}\xi \exp\left(-\int dx \ dy \ L\xi(x) \ \Gamma^{-1}(x-y) \ L\xi(y)\right)$$

$$L = \frac{\partial}{\partial x} + \mu\sqrt{\beta_{\rm Ed}}$$

Sum over path probabilities (Langevin equation) \rightarrow

Partition sum (Field-theory)

Partition sum: NON LOCAL GAUSSIAN FIELD THEORY \mathcal{Z} =

$$\mathcal{Z} = \int \mathcal{D}\xi \exp\left(-\int dx \, dy \, \mathcal{L}\xi(x) \, \frac{g(x-y)}{\mathcal{L}\xi(y)} \, \mathcal{L}\xi(y)\right)$$

Non-local field theory for the mechanically stable configurations sampled with viscous (+dry) friction

$$\mathcal{Z} = \int \mathcal{D}\xi \exp\left(-\int dx \, dy \, \mathcal{L}\xi(x) \, g(x-y) \, \mathcal{L}\xi(y)\right)$$

$$g(x-y) = \frac{1}{2\sqrt{2}\mu \ M \ \tau} \exp\left(-M\frac{|x-y|}{\tau}\right) \qquad M = \sqrt{1 + \frac{D_{\text{col}}}{\mu\sqrt{2\pi}}}$$

$$\mathcal{L} = \tau \; \frac{\partial^2}{\partial x^2} \; + \left(1 + 2\sqrt{\beta_{\rm Ed}}\mu \; \tau + \tau^2\right) \; \frac{\partial}{\partial x} \; + \mu\sqrt{\beta_{\rm Ed}}$$

Dry friction only $D_{col} \Longrightarrow 0$ $\tau \Longrightarrow 0$ Local theory is recovered

$$\mathcal{Z} = \int \mathcal{D}\xi \exp\left(-\int dx \left[\frac{1}{2\mu^2} \left(\frac{\partial\xi}{\partial x}\right)^2 + \frac{\beta_{\rm Ed}}{2}\xi^2(x)\right]\right)$$

CONCLUSIONS

- We presented a 1D model with **dry friction** where the effective thermodynamics $\hat{a} \, la$ Edwards works very well: transfer operator techniques, gaussian approximation of the constraint

- Uniform Edwards theory works well for dry friction: iso-energetic mechanically stable configurations are sample with identical probability

- What about viscous friction? Non-uniform Edwards theory!

f

- What about viscous friction? Non-local field theory, coloured noise

THANK FOR YOUR ATTENTION

PERSPECTIVES

- Transfer operator approach on the tree-like random graph (cavity equations)

PERSPECTIVES

- Study of non-linear springs (1D)

Tapping dynamics $m \ddot{x}_i = -mg\mu_d \operatorname{sgn}(\dot{x}_i) + (\xi_{i+1} - \xi_i) + \alpha(\xi_{i+1}^3 - \xi_i^3) + F_i^{\operatorname{ext}}(t)$

Effective theory
$$\mathcal{Z} = \int \mathcal{D}\boldsymbol{\xi} \ e^{-\beta_{\mathrm{Ed}} \sum_{i=1}^{N} \left[\frac{1}{2}\xi_{i}^{2} + \frac{\alpha}{4}\xi_{i}^{4}\right]} \ \delta[\mathcal{F}(\boldsymbol{\xi}) - 1]$$

Gaussian approximation: very well known field theory

$$S(\boldsymbol{\xi}) \sim \int dx \left[\frac{1}{2} \left(\frac{\partial \xi(x)}{\partial x} \right)^2 + \frac{1}{2} m^2 \xi^2(x) + \frac{\alpha m^2}{4} \xi^4(x) \right]$$

Career

Ph. D. : Supercooled liquids ; Trento (Italy), 2007-2009

<u>Supervisor</u>: P. Verrocchio. <u>Collaborations</u>: G. Parisi, A. Cavagna. I Giardina, T. Grigera, C. Cammarota

Post-Doc : Non-equilibrium Statistical Mechanis; Rome, 2010-2012

Advisor: A. Puglisi, A. Vulpiani

<u>Collaborations</u>: H. Touchette, R. Burioni, U. Marconi, A. Cavagna, T. Grigera, P. Verrocchio, A. Sarracino, D. Villamaina

Post-Doc : Glass transition; Paris, 2013-2014

Advisor: G. Biroli, S. Franz

Post-Doc : Non-equilibrium Statistical Mechanics; Grenoble, 2015-present

Advisor: E. Bertin, J.-L. Barrat

Collaborations: E. Ferrero

CORRELATION FUNCTION

$$C(|n-m|) \sim \exp(-|n-m|/\ell(e))$$

The operator (real, symmetric kernel) has an orthonormal basis

$$\mathcal{T}[f_b](x) = \lambda_b f_b(x) \qquad \int_{-\infty}^{\infty} f_b(x) f_a(x) = \delta_{a,b}$$
$$\lim_{N \to \infty} \langle \xi_m \xi_n \rangle_{Ed} = \sum_{b \in Sp(\mathcal{T})} \left(\frac{\lambda_b}{\lambda_{\max}} \right)^{n-m} \left| \int_{-\infty}^{\infty} dx \ x f_b(x) f_{\lambda_{\max}}(x) \right|^2$$

ENTROPY

Non-interacting springs approximation

Marginal distribution
$$p(\xi) = \mathcal{Z}^{-1} \int d\xi_1 \dots d\xi_{N-1} P(\boldsymbol{\xi}) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\xi^2/(2\sigma^2)}$$

$$\sigma \sim \sqrt{T_{\rm Ed}} \qquad s = -\int d\xi \ p(\xi) \ \log(p(\xi)) \sim \log(T_{\rm Ed})$$

Exact result

$$Q(\boldsymbol{\xi}) = P(\boldsymbol{\xi})/\mathcal{Z} \quad s = -\int \mathcal{D}\boldsymbol{\xi} \ Q(\boldsymbol{\xi}) \ \log(Q(\boldsymbol{\xi})) = \beta_{\mathrm{Ed}}e - \beta_{\mathrm{Ed}}f$$

$$\lim_{T_{\rm Ed}\to\infty} = \frac{1}{2}\log 2 + \log \mu$$

SCALINGS

Fluctuations of chain length

$$\mathcal{L} = L_0 + \sum_{i=1}^{N} \xi_i \qquad \langle \mathcal{L}^2 \rangle - \langle \mathcal{L} \rangle^2 = \sum_{ij} \langle \xi_i \xi_j \rangle \\ \langle \mathcal{L}^2 \rangle - \langle \mathcal{L} \rangle^2 \sim \xi(\beta_{\rm Ed}, \mu_{\rm s}) e(\beta_{\rm Ed}, \mu_{\rm s}) L_0$$

 $\langle \mathcal{L}^2 \rangle - \langle \mathcal{L} \rangle^2 \sim T_{\rm Ed}$

SPRING-LENGHT PROBABILITY DISTRIBUTIONS $P(\xi)$

a)

0.18

0.16

0.14 0.12

0.1

0.08

0.06 0.04

0.02

0

0.018

0.016

0.014

0.012

0.01

0.008 0.006

0.004 0.002

0

-3

-2

-1

0

1

2

3

-0.2

C)

-0.1

0

0.1

0.2

Lines: effective theory

Points: simulations

PROBABILITY DISTRIBUTION OF FORCE

12 10 10 0.1 0.01 8 0.001 0.0001 P(f) 1e-05 1e-06 1e-07 0 0.5 1.5 2 2.5 з 3.5 1 4 2 0 -0.1 0.3 f 0.2 0.6 0.4 0.5

Effective theory

UNSTABLE

AMORPHOUS PACKINGS & GLASSES

Number of blocked structures in frictional granular assemblies at given Volume

 $\log[\mathcal{N}_{blocked}(V)] \sim N$

Number of energy minima in models of glasses at given Energy

 $\log[\mathcal{N}_{\min}(E)] \sim N$

$$\frac{1}{X} = \frac{\partial S_{\text{blocked}}}{\partial V}$$

$$\frac{1}{T_{\rm eff}} = \frac{\partial S_{\rm states}}{\partial E}$$

ANGORICITY

$$\Sigma_{\mu\nu} = \sum_{ij} [\vec{d}_{ij} \otimes \vec{f}_{ij}]_{\mu\nu}$$

$$\alpha_{\mu\nu} = \frac{\partial S}{\partial \Sigma_{\mu\nu}}$$

Force-momentum tensor is conserved

"The Statistical Physics of athermal materials", D. Bi, <u>S. Henkes</u>, K. E. Daniels, B. Chakraborty arXiv:1404.1854

BETHE LATTICE

2D LATTICE

AMORPHOUS PACKINGS & GLASSES

Number of blocked structures in frictional granular assemblies at given Volume

 $\log[\mathcal{N}_{blocked}(V)] \sim N$

Number of energy minima in models of glasses at given Energy

 $\log[\mathcal{N}_{\min}(E)] \sim N$

$$\frac{1}{X} = \frac{\partial S_{\text{blocked}}}{\partial V}$$

$$\frac{1}{T_{\rm eff}} = \frac{\partial S_{\rm states}}{\partial E}$$

VOLUME 85, NUMBER 24 PHYSICAL REVIEW LETTERS 11 DECEMBER 2000

Edwards' Measures for Powders and Glasses

Alain Barrat,¹ Jorge Kurchan,² Vittorio Loreto,³ and Mauro Sellitto⁴

VOLUME 90, NUMBER 19

PHYSICAL REVIEW LETTERS

week ending 16 MAY 2003

Possible Test of the Thermodynamic Approach to Granular Media

David S. Dean and Alexandre Lefèvre

TEST OF EDWARDS IN ISING MODEL

A. Lefèvre & D. Dean, J. Phys. A: Math. Gen. 34 (2001)

1) Heating: all spins are flipped with probability $\,p\,$ $p \in [0, 1/2[$ TAPPING **DYNAMICS** 2) Quench at T=0: only spin flips which lower the energy are allowed **''BLOCKED CONFIGURATIONS''** Energy cannot be lowered with a single spin flip Heating Quench T=0 Quench T=0 Heating E_1 $\langle \mathcal{O} \rangle_{E(p)} = \mathcal{N}^{-1} \sum_{i=1}^{N} \mathcal{O}(\mathcal{C}_i) \, \delta \left(E - E_i \right)$ Average over states collected via tapping dynamics $\beta(p) = \left\lfloor \frac{\partial S}{\partial E} \right\rfloor_{E(p)} \quad \langle \mathcal{O} \rangle_{\beta(p)} = \mathcal{Z}^{-1} \sum_{\boldsymbol{\sigma} | \boldsymbol{\sigma} \in \text{blocked}} \mathcal{O}(\boldsymbol{\sigma}) \ e^{-\beta(p)E(\boldsymbol{\sigma})}$

TEST OF EDWARDS IN ISING MODEL

A. Lefèvre & D. Dean, J. Phys. A: Math. Gen. 34 (2001)

1) Heating: all spins are flipped with probability p $p \in [0, 1/2]$ **TAPPING DYNAMICS** 2) Quench at T=0: only spin flips which lower the energy are allowed **''BLOCKED CONFIGURATIONS''** Energy cannot be lowered with a single spin flip Quench T=0 Quench T=0 Heating Heating E_2 E_1 $\mathcal{Z} = \sum_{\boldsymbol{\sigma}} e^{\beta_{Ed} \sum_{i} \sigma_{i} \sigma_{i+1}} \prod_{i} \Theta(\sigma_{i-1}\sigma_{i} + \sigma_{i}\sigma_{i+1}) \quad \begin{array}{l} x \ge 0 \ \to \ \Theta(x) = 1 \\ x < 0 \ \to \ \Theta(x) = 0 \end{array}$ $\beta(p) = \left[\frac{\partial S}{\partial E}\right]_{E(p)} \quad \langle \mathcal{O} \rangle_{\beta(p)} = \mathcal{Z}^{-1} \sum_{\boldsymbol{\sigma} | \boldsymbol{\sigma} \in \text{blocked}} \mathcal{O}(\boldsymbol{\sigma}) \ e^{-\beta(p)E(\boldsymbol{\sigma})}$

SPRING-SPRING CORRELATION FUNCTION

Make use of eigenvalues and eigenvectors

$$\mathcal{T}[f_b](x) = \lambda_b f_b(x) \qquad \int_{-\infty}^{\infty} f_b(x) f_a(x) = \delta_{a,b}$$

$$\lim_{N \to \infty} \langle \xi_m \xi_n \rangle_{Ed} = \sum_{b \in Sp(\mathcal{T})} \left(\frac{\lambda_b}{\lambda_{\max}} \right)^{n-m} \left| \int_{-\infty}^{\infty} dx \ x f_b(x) f_{\lambda_{\max}}(x) \right|^2$$
Points = effective thermodynamics Lines = tapping dynamics (r=0.3) Comparison is at fixed energy
Comparison is at fixed energy

TEST OF EDWARDS IN ISING MODEL

$$\mathcal{Z} = \sum_{\sigma} e^{\beta_{Ed} \sum_{i} \sigma_{i} \sigma_{i+1}} \prod_{i} \Theta(\sigma_{i-1} \sigma_{i} + \sigma_{i} \sigma_{i+1}) \quad \begin{aligned} x \ge 0 &\to \Theta(x) = 1 \\ x < 0 &\to \Theta(x) = 0 \end{aligned}$$

$$\beta(p) = \begin{bmatrix} \frac{\partial S}{\partial E} \end{bmatrix}_{E(p)} \quad \langle \mathcal{O} \rangle_{\beta(p)} = \mathcal{Z}^{-1} \sum_{\boldsymbol{\sigma} | \boldsymbol{\sigma} \in \text{blocked}} \mathcal{O}(\boldsymbol{\sigma}) \ e^{-\beta(p)E(\boldsymbol{\sigma})}$$

TEST OF EDWARDS IN ISING MODEL + KINETIC CONSTRAINTS

J. Berg, S. Franz, M. Sellitto, EPJ B (2002)

- Same test on one-dimensional Kinetically Constrained Models
- Disagreement between dynamical averages and Edwards effective theory

De Smedt, Godrèche, Luck, EPJ B (2002)

FLUCTUATIONS OF ENERGY

10

Effective theory

GAUSSIAN APPROXIMATION OF THE CONSTRAINT

$$\mathcal{Z} = \operatorname{Tr}[\mathcal{T}^{N}] \quad T(x,y) = e^{-\beta_{Ed} \frac{x^{2}}{4}} \Theta(\mu - |x - y|) e^{-\beta_{Ed} \frac{y^{2}}{4}}$$
Smooth approximation of the constraint
$$\begin{array}{c} \Theta(\mu - |x - y|) \sim \frac{1}{\sqrt{\pi}} \exp\left(-\frac{|x - y|^{2}}{4\mu^{2}}\right) \\ \mathcal{Z} = \int d\xi_{1} \dots d\xi_{N} \quad \exp\left[-\boldsymbol{\xi} \cdot A\boldsymbol{\xi}\right] \\ e^{a_{1}} \int d\xi_{1} \dots d\xi_{N} \quad \exp\left[-\boldsymbol{\xi} \cdot A\boldsymbol{\xi}\right] \\ e^{a_{1}} \int d\xi_{1} \dots d\xi_{N} \quad \exp\left[-\boldsymbol{\xi} \cdot A\boldsymbol{\xi}\right] \\ e^{a_{1}} \int d\xi_{N} \int d\xi_{N}$$

DRIVEN ATHERMAL DYNAMICS

$$m \ddot{x}_i = F_{\rm diss} + F_{\rm el} + F_{\rm ext}$$

Blocked configurations

$$\langle \xi_i \xi_j \rangle \sim C\left(\frac{|i-j|}{\ell(e)}\right)$$

$$\ell(e) \sim e$$

$$e \sim \sqrt{?}$$

EFFECTIVE THERMODYNAMICS

$$\mathcal{Z} = \int_{\boldsymbol{\xi} \in \text{blocked}} \mathcal{D}\boldsymbol{\xi} \ e^{-\beta_{Ed} E[\boldsymbol{\xi}]}$$

$$\langle \xi_i \xi_j \rangle \sim \exp\left(-\frac{|i-j|}{\ell(e)}\right)$$

$$\ell(e) \sim e$$

$$e \sim \sqrt{T_{Ed}}$$

EDWARDS PARAMETER = DISSIPATED ENERGY

G. Gradenigo, E. Ferrero, E. Bertin, J.-L. Barrat, Phys. Rev. Lett. 115, 140601 (2015)