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Excitation/chage transfer processes

Usually, when a molecule is excited electronically by absorbing a
photon, it luminesces by emitting another photon (∼ 1ns).
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However, when another molecule with similar excitation energy is
present within tens of nanometers, the excitation can be swapped
between the molecules (∼ 1ps).
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Excitation transfer happens in biological systems (photosynthesis)

Similarly, charge transport (electron, proton) happens in chemical
redox reactions: D + A → D− + A+ (reactant and product)

Processes take place in noisy environments (molecular vibrations,
solvent degrees of freedom)
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Local model (red) and collective model (blue)

V : exchange or dipole-dipole interaction

◦ Local (uncorrelated) model: D, A have individual environments

◦ Collective (correlated) model: D, A have common environment



Goal

Derive transfer rate constants in excitation and charge transport
processes.



Our main result

We consider a weakly coupled dimer (V “small”) and derive the
equations of motion of the reduced dimer density matrix (reservoirs
traced out), which are:

– valid for all times 0 ≤ t ≤ ∞
– valid for all dimer-reservoir coupling strengths
– detailed and explicit, giving relaxation and decoherence rates
– mathematically rigorous

Our method

Dynamical Quantum Resonance Theory, in which the reduced
dynamics propagator is described by oscillating and decaying
directions associated to complex effective energies (=resonances)



Hamiltonian: Collective reservoirs model

Dimer interacts with a single reservoir

Hc =
1

2

(
ε V
V −ε

)
+ HR +

(
λ1 0
0 λ2

)
⊗ φ(g)

HR =
∑
k

ωka
†
kak , and φ(g) =

1√
2

∑
k

gka
†
k + h.c.

ε = D-A energy difference

V = direct matrix element, small: V << ε

λ1, λ2 = dimer-reservoir coupling constants

ωk = frequency mode k

a†k , ak bosonic creation, annihilation operators

gk = form factor



Hamiltonian: Local reservoirs model

Donor and acceptor levels interact with individual, independent
reservoirs

Hl =
1

2

(
ε V
V −ε

)
+ HR1 + HR2

+ λ1

(
1 0
0 0

)
⊗ φ1(g1) + λ2

(
0 0
0 1

)
⊗ φ2(g2)



Initial states, reduced dimer state

Initial states

Taken of the form (collective or local model)

ρin = ρS ⊗ ρR or ρin = ρS ⊗ ρR1 ⊗ ρR2

ρS = arbitrary initial density matrix of the dimer
ρR , ρR1 , ρR2 reservoir equilibrium states at a temperature T = 1/β

Reduced dimer density matrix

At time t: evolve whole dimer-reservoir density matrix, then trace
out the reservoirs:

ρS(t) = TrReservoir(s)

(
e−itHρine

itH
)

(H = Hc or H = Hl , colletive or local)



Reservoir spectral function

Effect of single reservoir on dimer encoded in spectral density

J(ω) =
√

2π tanh(βω/2) Ĉ(ω), ω ≥ 0,

where

Ĉ(ω) =
1√
2π

∫ ∞
−∞

e−iωtC(t)dt

is Fourier transform of the symmetrized correlation function

C(t) = Re
〈
eitHRφ(g)e−itHRφ(g)

〉
β

(thermal average)

Our mathematics require regularity condition (each reservoir):

J(ω) =
ωs

(1 + ω)σ
J̃(ω) with s ≥ 3 and σ > 3/2

J̃(ω) = bounded function

(Minimal a priori condition: s > 1, super-ohmic; not treatable up to now)



Dimer matrix elements

Dimer site basis for V = 0 (or, energy basis)

ϕ1 =

(
1
0

)
and ϕ2 =

(
0
1

)
Population of donor D

p(t) = 〈ϕ1, ρS(t)ϕ1〉 = [ρS(t)]11, p(0) ∈ [0, 1]

(Population of acceptor = 1− p(t))

Evolution t 7→ p(t) called relaxation while decoherence is
evolution of off-diagonal element

t 7→ [ρS(t)]12 = 〈ϕ1, ρS(t)ϕ2〉



Relaxation



Theorem (Population dynamics, relaxation) [M. et al, 2016]
Consider the local/collective reservoirs model. Let λ1, λ2 be
arbitrary. There is a V0 > 0 s.t. for 0 < |V | < V0:

p(t) = p∞ + e−γt (p(0)− p∞) + O( t
1+t ),

where

p∞ =
1

1 + e−βε̂
+ O(V ) with ε̂ = ε− α1−α2

2

γ = relaxation rate ∝ V 2

(different values for local and collective cases)

α1,2 = renormalizations of energies ±ε (∝ λ2
1,2)

p∞ = equil. value w.r.t. renormalized dimer energies

Note: Remainder small on time-scale γt << 1, i.e., t << V−2



Discussion: Properties of final donor population p∞

p∞ =
1

1 + e−βε̂
+ O(V ) with ε̂ = ε− α1−α2

2

Increasing acceptor-reservoir coupling increases acceptor population

p∞ ≈
1

2
− ε̂

4T
, for T >> |ε̂|.

– Donor strongly coupled: λ2
D >> max{λ2

A, ε} ⇒ ε̂ ∝ −λ2
D

Donor pop. p∞ increases in donor-reservoir coupling λ2
D

– Acceptor strongly coupled: λ2
A >> max{λ2

D , ε} ⇒ ε̂ ∝ λ2
A

Acceptor pop. 1− p∞ increases in acceptor-res. coupling λ2
A

• Effect intensifies at low temperatures:

p∞ ≈
{

1, if λ2
D >> max{λ2

A, ε}
0, if λ2

A >> λ2
D

for T << |ε̂|

Acceptor entirely populated if strongly coupled to reservoir at low temp.



Discussion: Relaxation rates

Collective relaxation rate

γc = V 2 lim
r→0+

∫ ∞
0

e−rt cos(ε̂t) cos

[
(λ1 − λ2)2

π
Q1(t)

]
e−

(λ1−λ2)2

π Q2(t)dt

with
Q1(t) =

∫ ∞
0

J(ω)

ω2
sin(ωt) dω,

Q2(t) =

∫ ∞
0

J(ω)(1− cos(ωt))

ω2
coth(βω/2) dω

Local relaxation rate

γl = V 2 lim
r→0+

∫ ∞
0

e−rt cos(ε̂t) cos

[
λ2

1

π
Q

(1)
1 (t) +

λ2
2

π
Q

(2)
1 (t)

]
× e−

λ2
1

π Q
(1)
2 (t)−λ2

2
π Q

(2)
2 (t) dt

Q
(j)
1,2 defined as Q1,2



Illustration: Recovering the Marcus formula

Consider spectral density

J(ω) ∝ ωse−ω/ωc , s > 1 and ωc > 0

and high temperatures, ωc << T . For 1 < s ≤ 2:

γc =

(
V

2

)2
√

2π

T (εc,1 + εc,2)

(
e
−

(ε−εc,1)2

2T (εc,1+εc,2) + e
−

(ε+εc,2)2

2T (εc,1+εc,2)

)

where εc,j ∝ λ2
j − λ1λ2 = reconstruction energies.

This is “Generalized Marcus Formula”; symmetric case
λ1 = −λ2 reduces to Marcus Formula for electron transfer:

γc =

(
V

2

)2√
π

T εc
e−

(ε−εc )2

4Tεc (0 < εc ∝ λ2)



Some numerical results

• Accuracy of generalized Marcus formula:
– ωc/T . 0.1 rates given by the gen. Marcus formula

coincide extremely well (∼ ±1%) with true values γc,l
– ωc/T & 1 get serious deviations (& 30%)

• Asymmetric coupling can significantly increase transfer rate:

Collective: x ∝ λ2
1 − λ2

2, y ∝ (λ1 − λ2)2 Local: εj ∝ λ2
j − λ1λ2

Surfaces = γc,l Red curve = symmetric coupling





Result: Non-interacting dimer V = 0

Populations constant in time and

[ρS(t)]12 = e−it ε̂D(t) [ρS(0)]12

– limt→∞[ρS(t)]12 = 0 called full phase decoherence
– limit nonzero called partial phase decoherence

Full decoherence ⇐⇒ low frequency modes well coupled to dimer:

Lemma. Full phase deco. ⇐⇒ J(ω) ∼ ωs with s ≤ 2 (ω → 0)

Graph: D(t) = e−Γ(t)

s = 3

Red: βωc = 0.1
Green: βωc = 1

Blue: βωc = 5



Result: Decoherence of the interacting dimer

For s > 2: residual asymptotic coherence lim
t→∞

D(t) = e−Γ∞ , Γ∞ > 0

Theorem (Decoherence) [M. et al, 2016]
Consider the local/collective reservoirs model with λ1, λ2 arbitrary.
There is a V0 > 0 such that if 0 < |V | < V0, then

[ρS(t)]12 = e−Γ∞ e−γt/2 e−it(ε̂+xLS) [ρS(0)]12 + O(V ) + O( 1
1+t ),

where γ is the relaxation rate, xLS ∈ R is the Lamb shift.

• Well-known relation from weak coupling theory (Bloch-Redfield)
holds for all coupling strengths:

γdecoherence = γrelaxation/2

• Theorem holds for s ≥ 3: regime of partial deco., Γ∞ <∞
• We expect to get rigorous result for s > 1. But if s ≤ 2: Γ∞ =∞,

above expansion not useful, analysis needs modification



Outline of mathematical method

• Original Hamiltonian

H =
1

2

(
ε V
V −ε

)
+ HR +

(
λ1 0
0 λ2

)
⊗ φ(g)

• ‘Unperturbed’ case V = 0 can be solved explicitly, for any values
of λ1, λ2 ∈ R.

Method: polaron transformation

U = exp
{
iP+ ⊗ φ(λ1g/iω) + iP− ⊗ φ(λ2g/iω)

}
Then

UHU∗ =
1

2

(
ε− α1 0

0 −ε− α2

)
+HR+

1

2
Vσ+⊗eiφ

(
(λ1−λ2)g/iω

)
+h.c.

• Approach: link spectral characteristics of H to dynamics. To find
spectrum of H, do perturbation theory in V small.



• Since density matrix evolution is e−itHρ eitH , what counts is the
difference of spectral points of H, i.e., spectrum of Liouville
operator L = H ⊗ 1− 1⊗ H
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• Eigenvalues of L0 are embedded in continuous spectrum, so
ordinary perturbation theory does not apply (indeed, eigenvalues
become complex!)
• Use “complex scaling” or “spectral deformation” or “Mourre
theory” to follow eigenvalues into the complex plane as V 6= 0



• Basic idea of spectral deformation: L 7→ L(θ), θ ∈ C s.t.

– L(0) = L and L(θ) is ‘regular’ in θ

– for increasing Imθ, the continuous spectrum of L0(θ) changes and

moves into the complex plane, away from the eigenvalues which do not

move. The eivenvalues are then isolated points in the spectrum.

Trade-off: L(θ) is not self-adjoint any longer.

X

X

X X

continuous spectrum

a− a0 a+ γ

V 2

0

• Now can do analytic perturbation theory: complex resonances aj
bifurcate out of system Bohr energies E = 0,±ε

aj = E + V 2xLS + iV 2γ + O(V 4)

• Then show a diagonalization formula

eitL(θ) =
∑
j

eitajPj + O(e−γt)



Theorem (Resonance expansion) [Könenberg-M. 2016]
Take λ1, λ2 ∈ R arbitrary and V small enough. For any initial
system-reservoir density matrix ρ0, any system observable A, any
t > 0, we have

Tr
(
ρ0 e

itHAe−itH
)

= 〈A〉SR,β +
∑
j=0,±

e itajχj(A) + O(1/t),

where 〈·〉SR is coupled equilibrium, χj are linear functionals and aj
are complex resonance energies with Imaj ∝ V 2γ + O(V 4).



Conclusion

I We consider donor-acceptor type models with
– small direct donor-acceptor coupling V
– local or collective noise

I Using a polaron transformation, we bring the system in a form
amenable to perturbation theory in V , uniformly in the
strength of the coupling with the reservoirs

I We show a resonance expansion of the dimer dynamics giving
the evolution of the reduced density matrix

I We find the asymptotic state and the relaxation rate (diagonal
matrix elements) and the decoherence rate (off-diagonals)

I For a symmetrically coupled system and high temperatures,
we recover the Marcus Formula for relaxation

I The decoherence rate is half the relaxation rate
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