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General context

@ Thermodynamical equilibrium: Maximization of the entropy.
No particle, energy, charge flow in the system.
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General context

@ Thermodynamical equilibrium: Maximization of the entropy.
No particle, energy, charge flow in the system.

@ Non-equilibrium stationary state: particle or energy currents

o:..‘.p:..... ...?. . ’7. .pb.
s .o.oo

Particle current

— No general framework for such systems: Ps;.:(C) ~ 7

— Exact computations have been done, and several techniques have
been developed (matrix ansatz).
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© A simple out-of-equilibrium model.
@ Framework: Markov process, master equation.
@ Presentation of the model.
@ Configurations space, Markov matrix.

© Stationary state and Matrix Ansatz.
@ Matrix Ansatz.
o Commutation relations.
@ Computation of physical quantities.

© Thermodynamical limit.
@ Scaling of the parameters.
@ Limit of the physical quantities.
@ Macroscopic fluctuation theory.
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A simple out-of-equilibrium model. Framework: Markov process, master equation.
ntation of the model

ations space, arkov matrix

C2 phase space

&m)
C . . Cn
Ci

Cs
@ The system can be in several different configurations.
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A simple out-of-equilibrium model. Framework: Markov process, master equation.
Presentation of the model

Configurations space, Markov matrix

C2 phase space
@ . &
w C,‘, Cl)dt
w(Cs,C1)dt Ci
Cs

@ The system can be in several different configurations.

@ During infinitesimal time dt, the system can jump from a
configuration C to another configuration C’ with probability
w(C’,C)dt.
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A simple out-of-equilibrium model. Framework: Markov process, master equation.

Presentation of the model
Configurations space, Markov matrix

Co P:(Co)
hase space
Ci—1P:(Cio1) P P

w(Ca, C1)dt w(Ci—1,C1)dt
pt(cl)/ P:(Cn)

C1 Cn
w(Cj, Cq)dt
w(Cs, C1)dEN_P(C3) Ci P:(Ci)
C3
@ Let P;(C) the probability for the system to be in configuration C at
time t.
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A simple out-of-equilibrium model. Framework: Markov process, master equation.
Presentation of the model

Configurations space, Markov matrix

Ca | Pi(C2) phase space

W(Cﬂfy w(Ci1,C1)dt__—Ci=1Pe(Ci-1)
Pt(cl)/ Pi(cn)
@ . e e

w(Cj, Cq)dt
W(CMX/‘H(CS) Ci P:(C)

Cs
@ Let P;(C) the probability for the system to be in configuration C at
time t.

@ The time evolution is governed by the master equation

P q:(C) = Z w(C,C)dtP.(C) + [1— Z w(C’,C)dt | P:(C) .
C'#£C C'#£C
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A simple out-of-equilibrium model. Framework: Markov process, master equation.
Presentation of the model

Configurations space, Markov matrix

Ca | Pi(C2) phase space

W(Cﬂfy w(Ci1,C1)dt__—Ci=1Pe(Ci-1)

a@/////// Pi(cn)

@ . e e
w(Cj, Cq)dt

W(CMX/‘H(CS) Ci P:(C)

Cs
@ Let P;(C) the probability for the system to be in configuration C at
time t.

@ The time evolution is governed by the master equation
P
9PC) _ v e, e)pc) = T w(e,C)PLC) .

dt C'#£C C'#£C
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A simple out-of-equilibrium model. Framework: Markov process, master equation.
Presentation of the model

Configurations space, Markov matrix

Ca | Pi(C2) phase space

W(Cﬂfy w(Ci1,C1)dt__—Ci=1Pe(Ci-1)

a@/////// Pi(cn)

@ . e e
w(Cj, Cq)dt

W(CMX/‘H(CS) Ci P:(C)

Cs
@ Let P;(C) the probability for the system to be in configuration C at
time t.

@ The time evolution is governed by the master equation
P
o:&@:mewmpZMawwy

dt C'#£C C'#£C
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A simple out-of-equilibrium model. Framework: Markov process, master equation.

Presentation of the model
Configurations space, Markov matrix

Cr S(C2)
hase space
Ci—15(Ci-1) P P

w(C2,C1)dt w(Ci—1,C1)dt
S(Cl)/ S(Cw)

Cl CN
w(Cj, C1)dt
w(Cs, C1)diN_ S(C3) Ci s
C3
@ Let S(C) the probability for the system to be in configuration C in
the stationary state.
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A simple out-of-equilibrium model. Framework: Markov process, master equation.
Presentation of the model

gurations space, Markov matrix

phase space

W(Cﬂfy w(Ci_1,C1)ds_—Ci—18(Ci1)
3(c1)/ S(Cn)
C1 . ... Ty
w(Cj, C1)dt
w(cm‘sws) Ci) @)
C3

@ Let S(C) the probability for the system to be in configuration C in
the stationary state.

@ It satisfies

0= > w(C,C)S(C)— Y w(C,C)S(C).

C'#C C'#C
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A simple out-of-equilibrium model. Framework: Markov process, master equation.
Presentation of the model

gurations space, Markov matrix

phase space

W(Cﬂfy w(Ci_1,C1)ds_—Ci—18(Ci1)
3(c1)/ S(Cn)
C1 . ... Ty
w(Cj, C1)dt
w(cm‘sws) Ci) @)
C3

@ Let S(C) the probability for the system to be in configuration C in
the stationary state.

@ It satisfies

0= > (w(C,C"S(C")—w(C,C)S(C)) -
27
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A simple out-of-equilibrium model. ework: Markov process, master equation.
tation of the model

ations space, Markov matrix

phase space
S(C1w(C2, 1) = S(Cw(Cs € %)

-
-
-

@ \ @y

@ In the thermodynamical equilibrium case, we have the detailed
balance w(C,C")S(C") = w(C',C)S(C).
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A simple out-of-equilibrium model. Framework: Markov process, master equation.
Pr tation of the model

Configurations space, Markov matrix

phase space

Cn

@ In the thermodynamical equilibrium case, we have the detailed
balance w(C,C")S(C") = w(C',C)S(C).

@ We can compute easily the stationary distribution

~ w(Ci,Ci—1)

S(Ci) = ms(cifl)
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A simple out-of-equilibrium model. Framework: Markov process, master equation.

Presentation of the model
Configurations space, Markov matrix

(63

phase space
S(C1)w(C2, €)= S(CMGC)) Ci—1

@ @y

S ¢
Cs
@ In the thermodynamical equilibrium case, we have the detailed
balance w(C,C")S(C") = w(C',C)S(C).

@ We can compute easily the stationary distribution

~ w(Ci,Ci-1)  w(C2,Cr)
S(Ci) = w(Ci_1,Ci) " w(Cy,Co)

S(C1)
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A simple out-of-equilibrium model. Framework: Markov process, master equation.

Presentation of the model
Configurations space, Markov matrix

C phase space

@ ry

S ¢
Cs
@ In the thermodynamical equilibrium case, we have the detailed
balance w(C,C")S(C") = w(C',C)S(C).

@ We can compute easily the stationary distribution

L w(CiCi1)  w(Cp, ()
() = w(Ci-1,Ci)  w(C1,C2) —~—
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A simple out-of-equilibrium model. Framework: Markov process, master equation.
Pr tation of the model

Configurations space, Markov matrix

Co
E(C)—Ee) phase space
e k
E(Cy)
e kg T
C]_ CN

@ In the thermodynamical equilibrium case, we have the detailed
balance w(C,C")S(C") = w(C',C)S(C).

@ We can compute easily the stationary distribution

w(Ci,Ci-1) w(C2,C1)

S(C;) = S(Cy
€)= wCvey " wien ) S
E(Cq)
_E(CH-E(Ci_1) _E(C)—E(C1) ¢ kB%

kgT e kgT

e
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A simple out-of-equilibrium model. Framework: Markov process, master equation.
Pr tation of the model

Configurations space, Markov matrix

Co
E(C)—Ee) phase space
e k
E(Cy)
e kg T
C]_ CN

@ In the thermodynamical equilibrium case, we have the detailed
balance w(C,C")S(C") = w(C',C)S(C).

@ We can compute easily the stationary distribution

_ w(C;,Ci1) w(C2,C1) e
S(C) = W(CraC) " w(Cr C) i(@_e B
_ E(C)—E(Ci_1) _E(Co)—E(C1) ¢ EI<(BC71')

e kgT e kg T
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A simple out-of-equilibrium model. ework: Markov process, master equation.
tation of the model

surations space, Markov matrix

phase space

Cn

@ In the thermodynamical equilibrium case, we have the detailed
balance w(C,C")S(C") = w(C',C)S(C).
@ We can compute easily the stationary distribution

E(C;)

S(C;)=e *T Ok with Boltzmann statistics!
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A simple out-of-equilibrium model. Framework: Markov process, master equation.
Pr tation of the model

Configurations space, Markov matrix

C phase space
S(C1)w(Cz, C1) 7 S(Caw(Cye) Ci—1

S(Ci—1)w(Ci, Ci—1) =\S(Ci)w(Ci—1,C;)
@ e 70 e @
S(C2)w(Cs, 2);05(03)W(C2vcz)
Ci
C3
@ In the out-of-equilibrium stationary state case, the detailed balance
is broken w(C,C")S(C") # w(C',C)S(C).
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A simple out-of-equilibrium model. Framework: Markov process, master equation.
Presentation of the model

Configurations space, Markov matrix

C phase space

@ 0 @

Cs
@ In the out-of-equilibrium stationary state case, the detailed balance
is broken w(C,C")S(C") # w(C',C)S(C).
@ There are probability currents flowing in the phase space in the
stationary state.
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A simple out-of-equilibrium model. Framework: Markov process, master equation.
Presentation of the model

Configurations space, Markov matrix

C phase space
S(C1)w(Cz, C1) 7 S(Caw(Cye) Ci_1

S(Cj—1)w(Cj, Ci—1) =\S(Ci)w(Ci—1,C;)
+

@ 0 @

S(C2)w(Cs, 2);05(03)W(C2vcz)
Ci
C3
@ In the out-of-equilibrium stationary state case, the detailed balance
is broken w(C,C")S(C") # w(C',C)S(C).
@ There are probability currents flowing in the phase space in the
stationary state.

The system does not obey a Boltzmann statistic!
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A simple out-of-equilibrium model. Framev Markov process, master equation
Presentation of the model.

Configurations space, Markov matrix

Dissipative symmetric simple exclusion process (DiSSEP)

llll.lll.l.lllllll

Stochastic process on a one dimensional lattice with boundaries
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A simple out-of-equilibrium model. Framev Markov process, master equation
Presentation of the model.

Configurations space, Markov matrix

Dissipative symmetric simple exclusion process (DiSSEP)

Stochastic process on a one dimensional lattice with boundaries

@ in the bulk, particles can jump to the left or to the right with rate 1
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A simple out-of-equilibrium model. Framev Vlarkov process, master equation
Presentation of the model.

Configurations space, Markov matrix

Dissipative symmetric simple exclusion process (DiSSEP)

E

—

Stochastic process on a one dimensional lattice with boundaries
@ in the bulk, particles can jump to the left or to the right with rate 1

@ in the bulk, particle pairs can attach or detach with rate \?
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A simple out-of-equilibrium model. Framev Vlarkov process, master equation
Presentation of the model.

Configurations space, Markov matrix

Dissipative symmetric simple exclusion process (DiSSEP)
(N
——

N
llll.lll.l.lllllll

Stochastic process on a one dimensional lattice with boundaries
@ in the bulk, particles can jump to the left or to the right with rate 1
@ in the bulk, particle pairs can attach or detach with rate \2

@ Fermi-like exclusion principle

Matthieu VANICAT, LAPTh Integrable dissipative exclusion process



A simple out-of-equilibrium model. Framev Markov process, master equation
Presentation of the model.

Configurations space, Markov matrix

Dissipative symmetric simple exclusion process (DiSSEP)

o
Y
L | l.l | l.l.l AN I N N B

/
Y

Stochastic process on a one dimensional lattice with boundaries

in the bulk, particles can jump to the left or to the right with rate 1
in the bulk, particle pairs can attach or detach with rate \2

Fermi-like exclusion principle

on the left boundary, particles enter with rate «, leave with rate
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A simple out-of-equilibrium model. Framework: Markov process, master equation
Presentation of the model.

Configurations space, Markov matrix

Dissipative symmetric simple exclusion process (DiSSEP)

p
Y
L | l.l | l.l.l AN N N I B

/
o

Stochastic process on a one dimensional lattice with boundaries

@ in the bulk, particles can jump to the left or to the right with rate 1
@ in the bulk, particle pairs can attach or detach with rate \2

@ Fermi-like exclusion principle

@ on the left boundary, particles enter with rate «, leave with rate v

@ on the right boundary, particles enter with rate ¢, leave with rate 3
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A simple out-of-equilibrium model. Framework: Markov process, master equation
Presentation of the model.

Configurations space, Markov matrix

Dissipative symmetric simple exclusion process (DiSSEP)

N
A2
a 11 Pz 3
Yy VYR —— "
[ | | l.l | l.l.l | | | | [
J "
v 0

Stochastic process on a one dimensional lattice with boundaries

@ in the bulk, particles can jump to the left or to the right with rate 1
in the bulk, particle pairs can attach or detach with rate \?
Fermi-like exclusion principle
on the left boundary, particles enter with rate «, leave with rate
on the right boundary, particles enter with rate ¢, leave with rate 3

The system is driven out-of-equilibrium by the reservoirs: there are
particle currents in the stationary state.
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A simple out-of-equilibrium model. Framey

Markov process, master equation
ation of the model
urations space, Markov matrix.

(I l.l l l.l.l l l.l l l.l

e Denote by C = (11, 72,...,71) a configuration of the system.
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A simple out-of-equilibrium model. Fram Vlarkov process, master equation
Presentation of the model

Configurations space, Markov matrix.

What is the configurations space?

(I l.l l l.l.l l l.l l l.l

0o 0o 061 00 1 1 0 O0 1 0 0 1

e Denote by C = (11, 72,...,71) a configuration of the system.
7; = 0 if site i is empty, 7; = 1 if it is occupied.
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A simple out-of-equilibrium model. Framework: Markov process, master equation
Presentation of the model

Configurations space, Markov matrix.

What is the configurations space?

I — l.l l l.l.l l l.l l l.l

0)8|0)®|0)o[1)x[0)2[0)s[1)8|1)o|0)x|0)x[1)©[0)©[0)®|1)

e Denote by C = (71, 72,...,71) a configuration of the system.
7; = 0 if site i is empty, 7; = 1 if it is occupied.

o Attach to each site a two dimensional vector space C? with basis

o (8) = n-(1)
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A simple out-of-equilibrium model. Framework: Markov process, master equation
Presentation of the model

Configurations space, Markov matrix.

The probabilities of all configurations can be gathered in a vector:
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A simple out-of-equilibrium model. Fram Markov process, master equation
Presentation of the model

Configurations space, Markov matrix.

The probabilities of all configurations can be gathered in a vector:

Py =| PO 0L0) = 3 p((nm)) i) @8I
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A simple out-of-equilibrium model. Fram Markov process, master equation
Presentation of the model

Configurations space, Markov matrix.

The probabilities of all configurations can be gathered in a vector:

P:( (0,...,0,0,0))
P:( (0,...,0,0,1))
Py =| P((0.....0,1,0

Master equation

= M|P:),
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A simple out-of-equilibrium model. Fram Markov process, master equation
Presentation of the model

Configurations space, Markov matrix.

The probabilities of all configurations can be gathered in a vector:
py=| PLO-0L0) = 3™ p((nm)) )@@ )

The master equation rewrite in a vector form:

Master equation

d|P:)
dt

= M|P:),

where M is the Markov matrix whose entries are M¢ ¢ = w(C,C’) and

Mec = — Z w(C',C).

c'#C
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A simple out-of-equilibrium model. Framework: Markov process, master equation
Presentation of the model

Configurations space, Markov matrix.

The Markov matrix can be written in a more explicit way:

L1
M =B+ w1+ Bi,
k=1
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A simple out-of-equilibrium model. Fram Markov process, master equation
Presentation of the model

Configurations space, Markov matrix.

The Markov matrix can be written in a more explicit way:

L1
M =B+ w1+ Bi,
k=1

22 0 0 X

(= v\ [ o -1 1 o | - (-5 B
B‘( o 7>'W_ 0 1 -1 0 B=1 5 3

M0 0 =N
End(C?) End(C* ® C?) End(C?)
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A simple out-of-equilibrium model. Fram k: Markov process, master equation
Presentation of the model

Configurations space, Markov matrix.

The Markov matrix can be written in a more explicit way:

L—1
M =B+ w1+ Bi,
k=1
where
22 0 0 X
f —a ~ S 0 -1 1 0 = ([ = B
_(a A/>'W_ 0 1 -1 0 B=1 5 3
X0 0 —x
End(C?) End(C* ® C?) End(C?)

The subscript index indicate on which sites the operators are acting
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A simple out-of-equilibrium model. Framework: Markov process, master equation
Presentation of the model

Configurations space, Markov matrix.

The Markov matrix can be written in a more explicit way:

L1
M =B+ w1+ Bi,
k=1

22 0 0 X

(= v\ [ o -1 1 o | - (-5 B
B(u A/>'W_ 0 1 -1 0 B=1 5 3

X0 0 =)\

End(C?) End(C* ® C?) End(C?)
The subscript index indicate on which sites the operators are acting
o0
2 =
o 11 I -
m A Y% — Y%
L 9, e
A )
Y 0
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E A
Stationary state and Matrix Ansatz. Commuta relations

Computation of physical quantities

Stationary state and Matrix Ansatz
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Matrix Ansatz.
Stationary state and Matrix Ansatz. Commutation relations
Computation of physical quantities

We want to find the steady state |S) such that M|S) = 0.
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Matrix Ansatz.
Stationary state and Matrix Ansatz. Commutation relations
Computation of physical quantities

We want to find the steady state |S) such that M|S) = 0.

Main Idea (Derrida, Evans, Hakim, Pasquier, 1992) :

o — 0

L | —E
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Matrix Ansatz.
Stationary state and Matrix Ansatz. Commutation relations

Computation of physical quantities

We want to find the steady state |S) such that M|S) = 0.

Main Idea (Derrida, Evans, Hakim, Pasquier, 1992):

W|EDEDD| V')
Zs

QJ—>D S(® ..):<<

., —E Zi = (W|(D+ E)1 V)
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Matrix Ansatz.
Stationary state and Matrix Ansatz. Commutation relations

Computation of physical quantities

We want to find the steady state |S) such that M|S) = 0.

Main Idea (Derrida, Evans, Hakim, Pasquier, 1992):

@ — 0> S(_®. @@, _ (WIEDEDDV)
Zs
., —E ZL = (W|(D+ E)HV)
S((0,...,0,0,0)) (WI|EE ... EE|V)
5((0,...,0,0,1) ) L | (wiee.. Epv)
|S) = : -~z :
S((1,...,1,1,1)) (W|DD...DD|V)
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Matrix Ansatz
Stationary state and Matrix Ansatz. Commutation relations.

Computation of physical quantities

The vector computed using this ansatz can be written

s>:;L<<W|(g)®(g)®...®(g)v>>
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Matrix Ansatz
Stationary state and Matrix Ansatz. Commutation relations.

Computation of physical quantities

The vector computed using this ansatz can be written
1 E E E
5=z (5 )e(g)eo(p)m

Recall that we want

L—1
M’S> = | B+ Z Wi k41 +§L ‘S> =0.
k=1
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Matrix Ansatz
Stationary state and Matrix Ansatz. Commutation relations.

Computation of physical quantities

The vector computed using this ansatz can be written
1 E E E
5=z (5 )e(g)eo(p)m

Recall that we want

L—1
M’S> — (BI+ZWk,k+1 +BL> ‘S> =0. |
k=1

Assume that

“(5)e(5)=(5) (W) -(W)e(5)
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Matrix Ansatz
Stationary state and Matrix Ansatz. Commutation relations.

Computation of physical quantities

The vector computed using this ansatz can be written
1 E E E
5=z (5 )e(g)eo(p)m

Recall that we want

L—1
M’S> — (BI+ZWk,k+1 +BL> ‘S> =0. |
k=1

Assume that

“(5)e(5)=(5) (W) -(W)e(5)

and

Matthieu VANICAT, LAPTh Integrable dissipative exclusion process



Matrix Ansatz
Stationary state and Matrix Ansatz. Commutation relations.

Computation of physical quantities

The vector computed using this ansatz can be written

5=z (5 )e(g)eo(p)m J

Recall that we want

L—1
M’S> — (BI+ZWk,k+1 +BL> ‘S> =0. |
k=1

Assume that

“(5)e(5)=(5) (W) -(W)e(5)

and
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M|S)

Ha



Mis) = (BI+§Wk,m+BL><<W(,§)®(g)@..@(g)V>>

k=1



M|S)

(Bl+§wk,k+1+BL> wi(p5)e(p)ee(p)m

k=1

wi( W )e(p)e o Vi) eals)



M|S)

(Bl+§wk,k+1+BL> wi(p5)e(p)ee(p)m

k=1

- (A )e(p)e o Vi) eals)
- <<W|(7HH)®(E)® ......... %)
w 2|S)
+ <<W|<E)®(_HH)® ......... %)



M|S)

(Bl+§wk,k+1+BL> wi(p5)e(p)ee(p)m
®W ...... \V))}Bl|8>

Il
=
—



M|S)

(Bl+§wk,k+1+BL> wi(p5)e(p)ee(p)m
®W ...... \V))}Bl|8>
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Matrix Ansatz
Stationary state and Matrix Ansatz. Commutation relations.

Computation of physical quantities

The previous relations are fulfilled if and only if the matrices E, D and H
satisfy the algebraic relations

Algebraic relations

DE —ED = EH+ HD,
M(D?> - E?) = HE - EH=HD - DH
(6E = BD)|V)) = —H|V)

(Wl|(aE —9D) = (W|H
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Matrix Ansatz
Stationary state and Matrix Ansatz. Commutation relations

Computation of physical quantities.

Can we compute something interesting with this algebra?

Matthieu VANICAT, LAPTh Integrable dissipative exclusion process



Matrix Ansatz
Stationary state and Matrix Ansatz. Commutation relations

Computation of physical quantities.
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Computation of physical quantities.

Can we compute something interesting with this algebra? Yes!
Change of generators basis in the algebra {E, D, H} — {G1, Gy, G3}

Matthieu VANICAT, LAPTh Integrable dissipative exclusion process



Matrix Ansatz
Stationary state and Matrix Ansatz. Commutation relations

Computation of physical quantities.

Can we compute something interesting with this algebra? Yes!
Change of generators basis in the algebra {E, D, H} — {G1, Gy, G3}

E=G + G+ G3, D=-G;+ Gy — Gs, HZQ)\(G3—G1).
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Matrix Ansatz
Stationary state and Matrix Ansatz. Commutation relations

Computation of physical quantities.

Can we compute something interesting with this algebra? Yes!
Change of generators basis in the algebra {E, D, H} — {G1, Gy, G3}

E=G + G+ G3, D=-G;+ Gy — Gs, HZQ)\(G3—G1). ’

with much simpler commutation relations:

G361 = Gi1Gs, GGL=0Gi1Gr, G3Gr = $GaGs, J
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Matrix Ansatz
Stationary state and Matrix Ansatz. Commutation relations

Computation of physical quantities.

Can we compute something interesting with this algebra? Yes!
Change of generators basis in the algebra {E, D, H} — {G1, Gy, G3}

E=G + G+ G3, D=-G;+ Gy — Gs, HZQ)\(G3—G1). ’

with much simpler commutation relations:

G361 = Gi1Gs, GGL=0Gi1Gr, G3Gr = $GaGs, J

and relations on the boundaries:

(W|G = (W|(aGs +cG), G3|V) = (bGr+dG)|V) |
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Matrix Ansatz
Stationary state and Matrix Ansatz. Commutation relations

Computation of physical quantities.

Can we compute something interesting with this algebra? Yes!
Change of generators basis in the algebra {E, D, H} — {G1, Gy, G3}

E=G + G+ G3, D=-G;+ Gy — Gs, HZQ)\(G3—G1). ’

with much simpler commutation relations:

G361 = Gi1Gs, GGL=0Gi1Gr, G3Gr = $GaGs, J

and relations on the boundaries:

(W[G = (Wl(aGs +cG), G3|V)) =(bG1+ dG)|V)) J
po 12X {a=2§1:z;7 7 {b=i§1§;;’:,
1+A = 2>\1r_n(y+~,f : d= 2;;(513 :
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Matrix Ansatz
Stationary state and Matrix Ansatz. Commutation relations

Computation of physical quantities.

Mean particle density at site i:

(r;) = (WI(E+D) ' D(E+D)"|V)
! (WIE+D)" V)
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Matrix Ansatz
Stationary state and Matrix Ansatz. Commutation relations

Computation of physical quantities.

Mean particle density at site i:

1 (WG (G-Gi—-G3)Gy ' V)

(r;) = (W[(E+D)*D(E+D)""|V) _ 1
! 2 (wiGz|v)

(WIE+D)" V)
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Matrix Ansatz
Stationary state and Matrix Ansatz. Commutation relations

Computation of physical quantities.

Mean particle density at site i:

1 (WG (G-Gi—-G3)Gy ' V)

(r;) = (W[(E+D)*D(E+D)""|V) _ 1
! 2 (wiGz|v)

(WIE+D)" V)

We have

(WIG G G vy
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Matrix Ansatz
Stationary state and Matrix Ansatz. Commutation relations

Computation of physical quantities.

Mean particle density at site i:

1 (WG (G-Gi—-G3)Gy ' V)

(r;) = (W[(E+D)*D(E+D)""|V) _ 1
! 2 (wiGz|v)

(WIE+D)" V)

We have

(WIGItaG V) = ¢ HWIGG V)
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Matrix Ansatz
Stationary state and Matrix Ansatz. Commutation relations

Computation of physical quantities.

Mean particle density at site i:

1 (WG (G-Gi—-G3)Gy ' V)

(r;) = (W[(E+D)*D(E+D)""|V) _ 1
! 2 (wiGz|v)

(WIE+D)" V)

We have

(WIGItaG V) = ¢ HWIGG V)
= ¢ (c(WIGHV)+a(W[G36; M| V))
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Matrix Ansatz
Stationary state and Matrix Ansatz. Commutation relations

Computation of physical quantities.

Mean particle density at site i:

1 (WG H(G-Gi-G)G V)
2 (wiGz|v)

(r;) = (WI(E+D) ' D(E+D)"|V)
! (WIE+D)" V)

We have

(WIGItaG V) = ¢ HWIGG V)

¢ (WIGEH V) +a(WIGs G V)
= ¢ ctadpt L) (W|GE|V)+abg?l=2(W|G T GGy V)
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Matrix Ansatz
Stationary state and Matrix Ansatz. Commutation relations

Computation of physical quantities.

Mean particle density at site i:

1 (WG (G-Gi—-G3)Gy ' V)

(r}) = (WI(E+D) ' D(E+D)"|V)

(W[(E+D)IV) 2 (WIGEIVY)
We have
(WG GG V) = ¢ (W|GiGs Y V)

= ¢ (c(WIGE V) +a(W[GsGy Y VY)

= ¢ (ctadpt ) (W|GE V) +abg?t =2 (W|GS GGy | V)
Hence

. i i—=1(cqadpl—1
(WIG iG5| v) = L2 D (wGE V).
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Matrix A
Stationary state and Matrix Ansatz. Commuta relations

Computation of physical quantities.

@ Mean particle density at site i

1 ¢i71(c+ ad(bLfl) _|_¢Lfi(d+ bC¢L71)
(i) = 2 1- 1 — abg2L-2
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Matrix Ansatz
Stationary state and Matrix Ansatz. Commutation relations

Computation of physical quantities.

@ Mean particle density at site i

1 ¢i71(c+ ad(bLfl) _|_¢Lfi(d+ bC¢L71)
(i) = 2 1- 1 — abg2L-2

@ Mean particle diffusion current between sites i and i + 1:

ety = 1— ¢ pt="=1(d + bept™1) — ¢'~L(c + adgt™1)
i—i+1 2 1_ ab¢2L_2 .
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Matrix Ansatz
Stationary state and Matrix Ansatz. Commutation relations

Computation of physical quantities.

@ Mean particle density at site i

<T->—1(1 ¢”<c+ad¢L1>+¢“<d+bc¢“>> |
R .

2 1 — abg?L-2

@ Mean particle diffusion current between sites i and i + 1:

ety = 1— ¢ pt="=1(d + bept™1) — ¢'~L(c + adgt™1)
i—i+1 2 1_ ab¢2L—2 .

@ Mean particle condensation current on sites j and j + 1:

< _and> _ (1 _ ¢)2 (bLfifl(d_‘_ bC(bLil) + ¢i71(c + adqb’-’l)
ii+1 2(1 + ¢) 1— abd)2L—2 :
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Scaling of the parameters
Limit of the physical quantities

Thermodynamical limit. Macroscopic fluctuation theory.

Thermodynamical limit
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Scaling of the parameters.
Limit of the physical quantities

Thermodynamical limit. Macroscopic fluctuation theory.

We want to keep a competition between the evaporation/condensation
process and the diffusion process as L — oo.
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Scaling of the parameters.
Limit of the physical quantiti

Thermodynamical limit. Macroscopic fluctuation theory.

We want to keep a competition between the evaporation/condensation
process and the diffusion process as L — oo.

d(ri)
dt

= (Tip1) — 21} + (Ti1) + X (2 = (Ti31) — (1i—1) — 2(73))
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Scaling of the parameters.
Limit of the physical quantiti

Thermodynamical limit. Macroscopic fluctuation theory.

We want to keep a competition between the evaporation/condensation
process and the diffusion process as L — oo.

dil? = (Tit1) = 2(m) + (mic1) + X (2 = (7i11) — (7i-1) — 2(73))
We set x = i and p(x) = (7).
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Scaling of the parameters.

Limit of the physical quantities
Thermodynamical limit. Macroscopic fluctuation theory.

We want to keep a competition between the evaporation/condensation
process and the diffusion process as L — oo.

d(ri)
dt

= (Tip1) — 21} + (Ti1) + X (2 = (Ti31) — (1i—1) — 2(73))

We set x = i and p(x) = ().

dp 1

X = ppﬂ(X) +2)2 (1 — 2p(x)).-
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Scaling of the parameters.

Limit of the physical quantities
Thermodynamical limit. Macroscopic fluctuation theory.

We want to keep a competition between the evaporation/condensation
process and the diffusion process as L — oo.

d(ri)
dt

= (1i41) = 2(m) + (1im1) + A (2 = (7i41) — (7i-1) — 2(7)) |

We set x = i and p(x) = ().

dp 1

L x) = 2 () + 203 (1~ 20(x) . \

We have to take
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Scaling of the para
Limit of the physical quantities.

Thermodynamical limit. Macroscopic fluctuation theory.

In the stationary state, the mean particle density is given by

(p(x)) = lim (n)

L—o00

1 1
<qle—2xo(x—1/2) + q2ez,\o(x—1/2))

= 37 2sinh 2)\g
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Scaling of the parameters
Limit of the physical quantities.
Macroscopic fluctuation theory.

Thermodynamical limit.

In the stationary state, the mean particle density is given by

(p(x)) = lim (n)

L—o00

1 1
<qle—2xo(x—1/2) + q2ez,\o(x—1/2))

2 + 2sinh 2\

with
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Scaling of the parameters
Limit of the physical quantities.

Thermodynamical limit. Macroscopic fluctuation theory.

pa<3 Pb<3. |
.
0.8
0.6
0.47
0.2
00 0‘2 0‘4 . 016 0‘8 i

Figure : Plot of the density for p, = 0.35, p, = 0.2 and )y = 3.
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Scaling of the parameters
Limit of the physical quantities.

Thermodynamical limit. Macroscopic fluctuation theory.

Pa> 3, Pb> 3 |
-
0.81
0.6
0.4
0.21
00 0‘2 0‘4 . 016 0‘8 i

Figure : Plot of the density for p, =1, pp, = 0.65 and \g = 3.
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Scaling of the parameters
Limit of the physical quantities.

Thermodynamical limit. Macroscopic fluctuation theory.

pa> 3, pb <3 |
-
0.81
0.6
0.4
0.21
00 0‘2 0‘4 . 016 0‘8 i

Figure : Plot of the density for p, =1, pp, = 0.2 and Ao = 3.
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Scaling of the parameters
Limit of the physical quantities.

Thermodynamical limit. Macroscopic fluctuation theory.

We can also compute the mean particle current on the lattice

(o) = Jim L U )
A o(x— X—
= 7sinh02)\0 (qle 2X0(x=1/2) _ q262)‘°( 1/2)) ,
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Scaling of the parameters
Limit of the physical quantities.

Thermodynamical limit. Macroscopic fluctuation theory.

We can also compute the mean particle current on the lattice

G = im L ()

_ Ao (qle—Z)\o(x—l/2) _ q2e2>\0(><—1/2)) ,

sinh 2)\0

and the mean particle condensation current

Ucond(x» = Llrr;o 12 % <Jf§71fjx+1>
2
— ﬁ (qle‘%(x—l/ 2 + qze”"(x_l/z)>
1 0
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Scaling of the parameters
Limit of the physical quantities.

Thermodynamical limit. Macroscopic fluctuation theory.

We can also compute exactly in the thermodynamical limit the variance
of the lattice current

Matthieu VANICAT, LAPTh Integrable dissipative exclusion process



Scaling of the parameters
Limit of the physical quantities.

Thermodynamical limit. Macroscopic fluctuation theory.

We can also compute exactly in the thermodynamical limit the variance
of the lattice current

sinh (2 Ao (2 x—l)) cosh(2 )\0) cosh (2 Ao (2x—1))+1
(snh220)® (sinh(2 Ag))*

pa(x) = 2192 A34 (2x—1)

4 V) X+e_4 A0 (I—X),e“ Ao (2 x—1)+3 _
a(sinh(2 Ag))*

Ao (1—x)+e—4 A0 X _4 Ao (1-2 x)+3
4(sinh(2 Ag))*

— q%)\o q% Ao

Ao cosh(2 Ao x) cosh (2 Ao (lfx))
+ sinh(2 \q) .
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Scaling of the parameters
Limit of the physical quantities.

Thermodynamical limit. Macroscopic fluctuation theory.

Figure : Plot of the lattice current for p, = 0.35, pp, = 0.2 and Ao = 3.
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Scaling of the parameters
Limit of the physical quantities.

Thermodynamical limit. Macroscopic fluctuation theory.

Figure : Plot of the lattice current for p, =1, pp = 0.65 and Ay = 3.
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Scaling of the parameters
Limit of the physical quantities.

Thermodynamical limit. Macroscopic fluctuation theory.

0 02 04 06 08 1
X

Figure : Plot of the lattice current for p, =1, p, = 0.2 and Ay = 3.
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Scaling of the p neters
Limit of the phy | quantities

Thermodynamical limit. Macroscopic fluctuation theory.

General framework in the thermodynamical limit: Macroscopic
Fluctuation Theory
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Scaling of the parameters
Limit of the physical quantities

Thermodynamical limit. Macroscopic fluctuation theory.

General framework in the thermodynamical limit: Macroscopic
Fluctuation Theory

Allows to compute fluctuations of the density and currents profiles
p(x, t), j(x,t) and j<9(x, t) around their mean values.
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Scaling of the parameters
Limit of the physical quantities

Thermodynamical limit. Macroscopic fluctuation theory.

General framework in the thermodynamical limit: Macroscopic
Fluctuation Theory

Allows to compute fluctuations of the density and currents profiles
p(x, t), j(x,t) and j<9(x, t) around their mean values.

Main idea
Plo, 7] <{P,J'Iatafcond}> ~oexp [—LI[O,T](P,J'I”,]C""")}
~ ! exp [_A] "

Matthieu VANICAT, LAPTh Integrable dissipative exclusion process



Scaling of the parameters
Limit of the physical quantities

Thermodynamical limit. Macroscopic fluctuation theory.

General framework in the thermodynamical limit: Macroscopic
Fluctuation Theory

Allows to compute fluctuations of the density and currents profiles
p(x, t), j(x,t) and j<9(x, t) around their mean values.

Main idea
Plo, 7] <{P,J'Iatafcond}> ~oexp [—LI[O,T](P,J'I”,]C""")}
~ ! exp [_A] "

@ The “action” A is called the large deviation functional.
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Scaling of the parameters
Limit of the physical quantities

Thermodynamical limit. Macroscopic fluctuation theory.

General framework in the thermodynamical limit: Macroscopic
Fluctuation Theory

Allows to compute fluctuations of the density and currents profiles
p(x, t), j(x,t) and j<9(x, t) around their mean values.

Main idea
Plo, 7] <{P,J'Iatafcond}> ~oexp [—LI[O,T](P,J'I”,]C""")}
~ ! exp [_A] "

@ The “action” A is called the large deviation functional.
@ The fields are related through particle conservation law

atp — _ leat _f_jcond'
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Scaling of the parameters
Limit of the physical quantities

Thermodynamical limit. Macroscopic fluctuation theory.

General framework in the thermodynamical limit: Macroscopic
Fluctuation Theory

Allows to compute fluctuations of the density and currents profiles
p(x, t), j(x,t) and j<9(x, t) around their mean values.

Main idea
Plo, 7] <{P,J'Iatafcond}> ~oexp [—LI[O,T](P,J'I“,]“’"")}
~ ! exp [_A] "

@ The “action” A is called the large deviation functional.
@ The fields are related through particle conservation law

atp — _ leat _i_jcond'

@ Minimizing this large deviation functional (over the three fields)
gives the “equations of motion” that is the hydrodynamic equation
satisfied by the mean values of the fields.
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Scaling of the S
Limit of the antities

Thermodynamical limit. Macroscopic fluctuation theory.

The large deviation functional is given by (Bodineau, Lagouge, 2009)

H H T 1 /at X 2 jcon
o, (e )= [ ot [ dX{i” S omemend (Y d)}, J
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Scaling of the parameters
Limit of the physical quantities

Thermodynamical limit. Macroscopic fluctuation theory.

The large deviation functional is given by (Bodineau, Lagouge, 2009)

. . T 1 -lat » 2] o
To(pa )=y e o] R o g |
where
H - . (jeond )2 1aA(p)C( )+-cond
(pje?)=1 | Ap)+C(p)— ownd)2+4A(p)C(p>+f°""'“( ) |-
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Scaling of the parameters
Limit of the physical quantities

Thermodynamical limit. Macroscopic fluctuation theory.

The large deviation functional is given by (Bodineau, Lagouge, 2009)

. . T 1 -lat » 2] o
oo )= | e J3 x{ LER (o)

where

. : ) jcond )21 4A(p) C(p)+j%"9
9(p.jr)=} A(p)+C(p)—\/(J“""d)2+4A(p)C(ﬂ)+f°""|n< ey )]

<

@ Only 4 relevant parameters: the diffusion coefficient D(p), the
conductivity o(p), the creation and annihilation rates C(p) and

A(p)-
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Scaling of the parameters
Limit of the physical quantities

Thermodynamical limit. Macroscopic fluctuation theory.

The large deviation functional is given by (Bodineau, Lagouge, 2009)

jla ;con. T 1 /at X 2
Iio, 11 (p" jeord)= [ dt [ dX{i(’ +2D(,((”p)f’ )

+¢(p,jcond)}’ l

where

.cond

i Z . icond)2 L 4 A(p)C|
®(pj)=3 | A(p)+C(p)— (_lcond)2+4A(p)C(p)+Jcond|n< G )ZC((,S) (p)+i )]

@ Only 4 relevant parameters: the diffusion coefficient D(p), the
conductivity o(p), the creation and annihilation rates C(p) and

A(p)-
@ The action vanishes (is minimal) when

dat __ :cond __
J7 = D(p)oxp,  j<" = C(p) — Alp). J




Scaling of tt
Limit of the pk quantities

Thermodynamical limit. Macroscopic fluctuation theory.

With this formalism we can compute the fluctuations of the lattice
current
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Thermodynamical limit. Macroscoplc fluctuation theory.

With this formalism we can compute the fluctuations of the lattice
current

@ It requires to minimize a slightly modified functional.
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Scaling of the S
Limit of the antities

Thermodynamical limit. Macroscopic fluctuation theory.

With this formalism we can compute the fluctuations of the lattice
current

@ It requires to minimize a slightly modified functional.

@ For that we need to solve coupled non linear differential equations.
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Scaling of the parameters
Limit of the physical quantities

Thermodynamical limit. Macroscopic fluctuation theory.

With this formalism we can compute the fluctuations of the lattice
current
@ It requires to minimize a slightly modified functional.

@ For that we need to solve coupled non linear differential equations.

@ To compute the variance it is enough to expand the fields to the
first order around their mean value: the differential equations then

become linear.
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Scaling of the parameters
Limit of the physical quantities

Thermodynamical limit. Macroscopic fluctuation theory.

With this formalism we can compute the fluctuations of the lattice
current

@ It requires to minimize a slightly modified functional.
@ For that we need to solve coupled non linear differential equations.

@ To compute the variance it is enough to expand the fields to the
first order around their mean value: the differential equations then
become linear.

@ We can solve them to get the variance.
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Scaling of the parameters
Limit of the physical quantities

Thermodynamical limit. Macroscopic fluctuation theory.

With this formalism we can compute the fluctuations of the lattice
current

@ It requires to minimize a slightly modified functional.
@ For that we need to solve coupled non linear differential equations.

@ To compute the variance it is enough to expand the fields to the
first order around their mean value: the differential equations then
become linear.

We can solve them to get the variance.

The solution matches exactly the value computed previously from
the finite size lattice: this provides a check of the MFT!!!
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Scaling of the parameters
Limit of the physical quantities

Thermodynamical limit. Macroscopic fluctuation theory.

Perspectives
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Scaling of th. neters
Limit of the phy | quantities

Thermodynamical limit. Macroscopic fluctuation theory.

Perspectives

e Compute, using a matrix ansatz, the full generating function of the
cumulants of the currents.
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Scaling of the S
Limit of the antities

Thermodynamical limit. Macroscopic fluctuation theory.

Perspectives

e Compute, using a matrix ansatz, the full generating function of the
cumulants of the currents.

@ Construct the excited states in a matrix product form.
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Scaling of the S
Limit of the antities

Thermodynamical limit. Macroscopic fluctuation theory.

Perspectives
e Compute, using a matrix ansatz, the full generating function of the
cumulants of the currents.

@ Construct the excited states in a matrix product form.

@ Solve more complicated models: for instance a 2-species TASEP
with boundaries (work in progress).
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Scaling of the parameters
Limit of the physical quantities

Thermodynamical limit. Macroscopic fluctuation theory.

Thank you!
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