
Kristin Riebe, AIP, GAVO

Provenance Data Model
RAVE Use case

Provenance Meeting in Paris, April 2016

2

Provenance DM from W3C

● 3 core classes:
– Agent

– Activity

– Entity

● core relations:
– used

– wasGeneratedBy

– wasDerivedFrom

– wasAttributedTo

– wasAssociatedWith

● + many more classes and relations

activity-data-flow

data-flow

http://www.w3.org/TR/prov-dm/

responsibility view

3

Example: Reduced RAVE-fits file
● PROV-N notation

● 2 files

● 2 agents

● 2 activities

● relations

entity(rave:0645m522I0049.wav.fits, [prov:type = 'std:fits']
entity(rave:0645m522I0049.fits, [prov:type = 'std:fits']

4

Example: Reduced RAVE-fits file
● PROV-N notation

● 2 files

● 2 agents

● 2 activities

● relations

entity(rave:0645m522I0049.fits, [prov:type = 'std:fits']
entity(rave:0645m522I0049.wav.fits, [prov:type = 'std:fits']

agent(aao:Paul_Cass, [prov:type='prov:Person'])
agent(rave:Alessandro_Siviero, [prov:type='prov:Person'])

5

Example: Reduced RAVE-fits file
● PROV-N notation

● 2 files

● 2 agents

● 2 activities

● relations

entity(rave:0645m522I0049.fits, [prov:type = 'std:fits']
entity(rave:0645m522I0049.wav.fits, [prov:type = 'std:fits']

activity(rave:act_observation, 2008-02-16T13:25:24, -,
 [prov:type = 'obs:Observation'])
activity(rave:act_irafReduction, 2008-03-04T09:46:57, -,

[prov:type = 'std:reduction'])

agent(aao:Paul_Cass, [prov:type='prov:Person'])
agent(rave:Alessandro_Siviero, [prov:type='prov:Person'])

6

Example: Reduced RAVE-fits file
● PROV-N notation

● 2 files

● 2 agents

● 2 activities

● relations

entity(rave:0645m522I0049.fits, [prov:type = 'std:fits']
entity(rave:0645m522I0049.wav.fits, [prov:type = 'std:fits']

activity(rave:act_observation, 2008-02-16T13:25:24, -,
 [prov:type = 'obs:Observation'])
activity(rave:act_irafReduction, 2008-03-04T09:46:57, -,

[prov:type = 'std:reduction'])

agent(aao:Paul_Cass, [prov:type='prov:Person'])
agent(rave:Alessandro_Siviero, [prov:type='prov:Person'])

wasAssociatedWith(rave:act_observation, aao:Paul_Cass, -,
[prov:role = 'obs:Observer'])

wasAssociatedWith(rave:act_irafReduction, rave:Alessandro_Siviero, -)

wasGeneratedBy(rave:0645m522I0049.fits, rave:act_observation, -)
used(rave:act_irafReduction, rave:0645m522I0049.fits, -)
wasGeneratedBy(rave:0645m522I0049.wav.fts, rave:act_irafReduction, -)
wasDerivedFrom(rave:0645m522I0049.wav.fts, rave:0645m522I0049.fits)

7

Example: Reduced RAVE-fits file
● Graph produced with ProvStore (using GraphViz):

https://provenance.ecs.soton.ac.uk/store/documents/84420/

https://provenance.ecs.soton.ac.uk/store/documents/84420/

8

Example: Reduced RAVE fits-file
● Graph reordered, attributes hidden:

Time

9

Example: Reduced RAVE fits-file
● Graph reordered, attributes hidden:

Time

10

Example: RAVE database tables
(nearly complete history)

 https://provenance.ecs.soton.ac.uk/store/documents/84064/

https://provenance.ecs.soton.ac.uk/store/documents/84064/

11

Example: RAVE database tables
(nearly complete history)

12

13

Webapp for RAVE provenance

● Testing how to implement the data model myself

● Simple setup using Django Framework with SQlite3 database

● Define classes “as is”, main provenance classes,
one DB table for each:

– entity

– activity

– agent

– used -- foreign keys to activity, entity

– wasGeneratedBy -- foreign keys to entity, activity

– wasAssociatedWith -- foreign keys to entity, agent

– hadMember -- foreign keys to entities (one with type collection)

– wasDerivedFrom -- foreign keys to entities

14

Webapp for RAVE provenance

● Create views to show e.g.
– provn-serialisation of the complete provenance

– graph-representation
● could also divide between the 3 different views:

– data flow (entities)
– process flow (activities)
– responsibility view (agents)

– list of activities, entities, agents

– details for individual elements

● Provide detailed information for individual observations
– given an obsId, return file names and locations of intermediate and

raw files

● More use cases?

15

Use cases

● There are different types of users:
– project manager: interested mainly in coarse data flow, involved

processes (activities), not very detailed

– “pipeline writer” (e.g. scientist from the project): interested in
redoing parts of the pipeline, using different algorithms, testing
influence of different parameters

– “other scientist”: usually interested in science-ready data only (no
need for raw observation files), quality assessment, error-bars,
applicability of data, error tracking

16

Use cases

● Example: Project management:
– Give me a visualisation of the data flow and the work flow,

showing all involved activities, agents and resulting entities.
● Interesting for PI of the project, someone writing a report, a funding

agency

● Example: Pipeline analysis
– Where are the raw fits-files? The flat-fields? Can I access the

extracted spectrum for each fiber? Which processes were
involved and where are they described?

17

Use cases
● Examples: Scientist:

– Who created the stellar_parameters-table?
● i.e.: get the agent associated with this entity, thus: retrieve details for

this entity

– Where do the values in column Teff_K come from? In which
paper are the methods described? The uncertainties?

● errors are in additional columns "e..."-something. Are things like this
described in any other data model/standard?

– Are intermediate files (spectrum png/ascii) for a given obsId
available? How could I get them?

● Or: who do I need to ask for them?
● Need: permission/accessibility flag, contact details

–

18

Use cases
● Examples: Scientist (continued):

– How are values (for a given star) changing for each data release?
What's the difference in processing?

● First part can be answered with published data alone, provenance
only needed for second question.

– Are there multiple observations of the same star? If the derived
heliocentric radial velocity differs more than the error bars
suggest: what was causing this difference? (Which processing
step(s)?)

– What is the coverage of this survey? Compare intended/actual
coverage for studies of completeness/selection effects.

● Needs additional information on failed fibers per field

19

Implementation details: attributes

● common attributes for activity/entity/agent:
– id

– label

– type

– description

– W3C: id is a qualified name, e.g. a string like: rave:DR4 as id for
an entity

● additional attributes for each major class

20

Implementation details: attributes

● activity:
– type: observation, reduction, classification, crossmatch, chemical

pipeline, distances, other

– docuLink: link to documentation, e.g. paper, webpage, ...

● entity:
– type: prov:Collection, voprov:dataset, voprov:image

– status (better: accessibility?): voprov:public, voprov:restricted,
maybe also: "unavailable"

– dataType: voprov:database, voprov:databaseTable,

– voprov:directory, std:fits, std:votable

21

Implementation details: attributes

● different attributes needed for different types of
activity/entity/agent

– agent, type=”project”: webpage

– agent, type=”person”: first name, last name, affiliation, email

● could use subclasses instead of 'type'-attribute

● or separate attributes from the tables
– e.g. done in PROV-Man implementation of PROV-DM,

http://nl.sharp-sys.com/provman/PROVman.html

– could even use one common class for all of them, and make
distinction between activity/entity/agent by another table field

● use one common class/table for all relations?

22

Discussions

	Title Slide
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22

