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The MeV/sub-GeV domain
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 Worst covered part of the electromagnetic spectrum (only a few tens of steady
sources detected so far between 0.2 and 30 MeV)

* Many objects have their peak emissivity in this range (GRBs, blazars, pulsars...)
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® Photon interaction probability
reaches a minimum at ~ 10 MeV

@ Three competing processes of
interaction, Compton scattering
being dominant around 1 MeV
=> complicated event reconstruction
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Observational challenges
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© The MeV range is the domain of
nuclear y-ray lines (radioactivity,

nuclear collision, positron
annihilation, neutron capture)

@ Strong instrumental background

Mass attenuation (cm2 g'l)
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Scientific requirements

1. Excellent sensitivity in the 1-30 MeV energy range (better than CGRO/COMPTEL
by a factor of 50 - 100)
2.  Gamma-ray polarization for both transient and steady sources
3. Unprecedented angular resolution (e.g., ~ 10" at 1 GeV)
4. Large field of view (~ 2.5 sr) = efficient monitoring of the y-ray sky
5. Sub-millisecond trigger and alert capability for transients
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Angular resolution
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* Angular resolution needs to be
improved close to the physical limits
(Doppler broadening, nuclear recoil)
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Gamma-ray polarization

* vy-ray polarization in objects emitting jets
(GRBs, Blazars, X-ray binaries) or with
strong magnetic field (pulsars,
magnetars) = magnetization and
content (hadrons, leptons, Poynting flux)
of the outflows + radiation processes

* vy-ray polarization from cosmological
sources (GRBs, Blazars) = fundamental
guestions of physics related to Lorentz
Invariance Violation (vacuum
birefringence)

v' e-ASTROGAM will measure the y-ray
polarization of ~ 100 GRBs per year
(promising candidates for highly y-ray
polarized sources)

corrected counts/degree
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Core science motivation

1. Jet & outflow astrophysics (active galactic nuclei, gamma-ray
bursts, compact binaries) and the link to new messenger
astronomies (gravitational waves, neutrinos, ultra-high energy

cosmic rays)

2. Origin & impact of high-energy particles on Galaxy evolution,
from cosmic rays to antimatter

3. Supernovae, nucleosynthesis & cosmic evolution of matter

+ ... tests of Lorentz Invariance Violation (polarization, time
tagging of 1 us, spectral range covering 4 orders of magnitude)
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Core science topic #1

Jet & acceleration from GRBs and supermassive BHs at high z

 Why did the most luminous jetted AGN
with mass > 10° M formed earlier than
non-jetted AGN?

* Launch of ultra-relativistic jets in GRBs?
Ejecta composition, energy dissipation
site, radiation processes?

* Are BL Lac blazars AGN sources of high-
energy neutrinos and UHECRs?

* Are some short GRBs associated with
gravitational waves from neutron star/
black hole mergers?
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v' e-ASTROGAM: wide field of view, unprecedented sensitivity, polarimetry
=> access to a variety of extreme transient phenomena
- More than 1000 AGN detectionsup toz > 6

- (1.2 - 18) NS-NS mergers per year with gravitational waves
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Core science topic #2

Origin & impact of high-energy particles on Galaxy evolution

Fermi LAT |
40 - 150 MeV]

 What are the energy distributions and fluxes of
CRs produced in supernova remnants and
propagating in the interstellar medium?

 What is the role of CRs in the self regulation of
the Galactic ecosystem (star formation,
galactic winds, magnetic field growth...)?

 What are the origins of the Fermi Bubbles and
the 511 keV emission from the Galaxy’s bulge?
Are these linked to a past activity of the central
supermassive black hole?

v' e-ASTROGAM!: detailed spectro-imaging,
thanks to the significantly improved sensitivity
and angular resolution in the MeV — GeV range
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Q

Supernovae, nucleosynthesis &

11

cosmic evolution of matter

* Progenitor system(s) & explosion mechanism(s) of thermonuclear SNe?

Standard candles for precision cosmology?

* Diversity of core-collapse events? Formation of black holes & neutron stars?

* How are cosmic isotopes created in stars and supernovae, distributed in the

ISM and recycled into new stars?

v/ e-ASTROGAM: excellent sensitivity
for detection of key y-ray lines =

- Mass and evolution of ejected
*6Ni/>6Co in a dozen of SN la

- *Tiradioactivity from all young
Galactic SNRs & SN 1987A

- Deep survey of the 2°Al, ®°Fe and
positron annihilation radiations

%Co 847 keV line flux [10™ ph cm™@ s7]
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&) e-ASTROGAM observatory in context

E-ELT/LSST 12

e- ASTROGAM Athena JWST

\ \,, = /.
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High-redshift bIazars
high- accretlon AGN

Cosmic rays & the interstellar
medium (tracing gas &

Supernova remnants
& PeVatrons Supernovae cosmic-ray feedback)
J (kilo)novae,
\V nucleosynthesis
GRBs, merger events \ Pulsars, magnetars
& other transients Fundamental X- & y-ray binaries, e
. : . (polarization)
(polarization) physics microquasars

3 R A LIGO/Vlrgo, KAGRA INDIGO, European Pulsar Timing Array,
IceCube/KM3NeT Einstein Telescope, Cosmic Explorer, LISA
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Measurement principle

Pair event 13
Y Compton event

AC system

Si Tracker

Calorimeter

Tracked Compton

* Tracker — Double sided Si strip detectors (DSSDs) for excellent spectral resolution
and fine 3-D position resolution

e Calorimeter — High-Z material for an efficient absorption of the scattered photon
=> Csl(TI) scintillation crystals readout by Si Drift Diodes for better energy resolution

* Anticoincidence detector to veto charged-particle induced background = plastic
scintillators readout by Si photomultipliers
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e e-ASTROGAM payload

Detail of the detector-ASIC
bonding in the AGILE Si Tracker

14

e Tracker: 56 layers of 4 times 5x5 DSSDs (5600
in total) of 500 um thickness and 240 um pitch

* DSSDs bonded strip to strip to form 5x5 ladders
B Light and stiff mechanical structure
' » Ultra low-noise front end electronics

@

e Calorimeter: 33 856 Csl(Tl) bars coupled at both
ends to low-noise Silicon Drift Detectors

* ACD: segmented plastic scintillators coupled to
SiPM by optical fibers

— * Heritage: AGILE, Fermi/LAT, AMS-02, INTEGRAL,
'Ferm'/L,AT_A_C_syétem d LHC/ALICE...
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Solar panel
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Radiator

Platform — Thales Alenia Space
PROTEUS 800 (SWOT CNES/NASA)

Orbit — Equatorial (inclination i < 2.5°,

eccentricity e < 0.01) low-Earth orbit
(altitude in the range 550 - 600 km)

Launcher — Ariane 6.2

Observation modes — (i) zenith-pointing

sky-scanning mode, (ii) nearly inertial
pointing, and (iii) fast repointing to
avoid the Earth in the field of view

In-orbit operation — 3 years duration +

provisions for a 2+ year extension

>
D
=
"o
«
E
o
=
=

Satellite and mission profile

Background environment in an ELEO
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e-ASTROGAM Collaboration

Lead proposer:

A. De Angelis (INFN, It.)

Co-lead proposer:

V.T. (CNRS, Fr.)

>400 collaborators L6

from institutions in 24 countries; Science White Book just published (224 authors; 194 pages)
16
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All-sky Medium Energy Gamma-ray Observatory

e NASA/GSFC, G. Wash. Univ., Clemson Univ., NRL, UC Berkeley, Wash.
6‘:9 Univ., UNH, NASA/MSFC, UAH, USRA, OSU, UIUC, UNLV, UDel, UCSC,

V[\Q/ SLAC, Stanford, UNF, Yale, RICE, INFN, Pisa Univ., Padova Univ.,
% Stockholm Univ., INAF, LIP, Udine Univ., Rome Univ., CSNSM
Square 80 cm side
| € > |
ACD
Si Tracker B Anticoincidence
DSSD in 60 layers Detector
with 1 cm Plastic scintillator
spacing. Strip Si-strip shell for charged
pitch 0.5 mm. Trackes, 60 particle rejection.

80 cm

planes

CZT Calorimeter

Drift configuration with single
layer array of 0.6 cm x 0.6 cm
x 2 cm bars surrounding
lower tracker layers.

Designed for a NASA Probe mission
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calorimeter, 2.5 )

~——————Csl calorimeter, 6 planes, 5 X, ————

Csl Calorimeter

Hodoscopic arrangement of
1.5cm x 1.5 cm Csl barsin 6
layers with SiPM sensors.

Mission and
spacecraft

design can build
on development
for ComPair




*THESEUS is a submitted project to ESA for the M5
slot. The expected selection for phase A will be
announced early 2018, for an expected launch date as
early as 2029.

*THESEUS Core Science is based on two pillars:
o probe the physical properties of the early Universe, by
discovering and exploiting the population of high redshift
GRBs.
o provide an unprecedented deep monitoring of the soft X-
ray transient Universe, providing a fundamental contribution to
multi-messenger and time domain astrophysics in the early
2030s (synergy with aLIGO/aVirgo, eLISA, ET, Km3NET and
EM facilities e.g., LSST, E-ELT, SKA, CTA, ATHENA).
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Autonomous platform,
with rapid repointing
capabilities

Low Earth Orbit (~600
km), low inclination
(<5°)

Fast ground
communication for
alert dissemination

THESEUS Payload

Soft X-ray Imager: a set of four « Lobster Eye » telescope
with an overall field of view of 1 sr, <arcmin localization
accuracy, working in the 0.3-6 keV energy range. One order
of magnitude more sensitive than previous wide field
instruments. Provided by an UK led consortium

X-Gamma ray Imaging Spectrometer : three coded mask
telescopes with a focal plane composed by a combination of
Si and Csl detectors (possibility of polarization
measurements). Sensitive in the 2 keV to 20 MeV, with an
(up to) 4 sr field of view, a source location accuracy of 5 arc
min. Provided by a consortium led by Italy.

Near Infra-Red Telescope for rapid on-board follow-up with
a 0.7 m primary mirror, sensitive in the 0.7-1.8 um range,
with a 10x10 arc min field of view and moderate
spectroscopic capabilities (goal of 500). Provided by a
consortium lead by France.

http://www.isdc.unige.ch/theseus/
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Technical Office to 13 best candidates = .
_ '3 to be selected for a phase A early 2018
' Expected launch date: 2029,  © ¢
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