e-ASTROGAM and the future of gamma-ray space astronomy

X

Multi-wavelength/messenger context

The MeV/sub-GeV domain

- Worst covered part of the electromagnetic spectrum (only a few tens of steady sources detected so far between 0.2 and 30 MeV)
- Many objects have their peak emissivity in this range (GRBs, blazars, pulsars...)

Observational challenges

- Photon interaction probability reaches a minimum at ~ 10 MeV
- ☼ Three competing processes of interaction, Compton scattering being dominant around 1 MeV
 ⇒ complicated event reconstruction

- The MeV range is the domain of nuclear γ-ray lines (radioactivity, nuclear collision, positron annihilation, neutron capture)
- Strong instrumental background from activation of spaceirradiated materials

Scientific requirements

- Excellent sensitivity in the 1-30 MeV energy range (better than CGRO/COMPTEL by a factor of 50 - 100)
- 2. Gamma-ray polarization for both transient and steady sources
- 3. Unprecedented angular resolution (e.g., ~ 10' at 1 GeV)
- 4. Large field of view (~ 2.5 sr) \Rightarrow efficient monitoring of the γ-ray sky
- 5. Sub-millisecond trigger and alert capability for transients

Angular resolution

 Angular resolution needs to be improved close to the physical limits (Doppler broadening, nuclear recoil)

Cygnus region in the 1 - 3 MeV energy band with the e-ASTROGAM PSF (extrapolation of the 3FGL source spectra to low energies)

V. Tatischeff

Probing quantum spacetime: the CTA era and beyond

LPNHE

29-30 Nov 2017

Gamma-ray polarization

- γ-ray polarization in objects emitting jets
 (GRBs, Blazars, X-ray binaries) or with
 strong magnetic field (pulsars,
 magnetars) ⇒ magnetization and
 content (hadrons, leptons, Poynting flux)
 of the outflows + radiation processes
- γ-ray polarization from cosmological sources (GRBs, Blazars) ⇒ fundamental questions of physics related to Lorentz Invariance Violation (vacuum birefringence)
- \checkmark e-ASTROGAM will measure the γ-ray polarization of \sim **100 GRBs per year** (promising candidates for highly γ-ray polarized sources)

Core science motivation

8

- Jet & outflow astrophysics (active galactic nuclei, gamma-ray bursts, compact binaries) and the link to new messenger astronomies (gravitational waves, neutrinos, ultra-high energy cosmic rays)
- Origin & impact of high-energy particles on Galaxy evolution, from cosmic rays to antimatter
- 3. Supernovae, nucleosynthesis & cosmic evolution of matter
- + ... tests of Lorentz Invariance Violation (polarization, time tagging of 1 μs, spectral range covering 4 orders of magnitude)

Core science topic #1

Jet & acceleration from GRBs and supermassive BHs at high z

- Why did the most luminous jetted AGN with mass > 10⁹ M_☉ formed earlier than non-jetted AGN?
- Launch of ultra-relativistic jets in GRBs?
 Ejecta composition, energy dissipation site, radiation processes?
- Are BL Lac blazars AGN sources of highenergy neutrinos and UHECRs?
- Are some short GRBs associated with gravitational waves from neutron star/ black hole mergers?

- ✓ e-ASTROGAM: wide field of view, unprecedented sensitivity, polarimetry
 - ⇒ access to a variety of extreme **transient** phenomena
 - More than 1000 AGN detections up to z > 6
 - (1.2 18) NS-NS mergers per year with gravitational waves

Core science topic #2

Origin & impact of high-energy particles on Galaxy evolution

- What are the energy distributions and fluxes of CRs produced in supernova remnants and propagating in the interstellar medium?
- What is the role of CRs in the self regulation of the Galactic ecosystem (star formation, galactic winds, magnetic field growth...)?
- What are the origins of the Fermi Bubbles and the 511 keV emission from the Galaxy's bulge? Are these linked to a past activity of the central supermassive black hole?
- ✓ e-ASTROGAM: detailed spectro-imaging, thanks to the significantly improved sensitivity and angular resolution in the MeV – GeV range

Core science topic #3

Supernovae, nucleosynthesis & cosmic evolution of matter

- Progenitor system(s) & explosion mechanism(s) of **thermonuclear SNe**? Standard candles for **precision cosmology**?
- Diversity of core-collapse events? Formation of black holes & neutron stars?
- How are cosmic isotopes created in stars and supernovae, distributed in the ISM and recycled into new stars?
- \checkmark e-ASTROGAM: excellent sensitivity for detection of key γ -ray lines \Rightarrow
 - Mass and evolution of ejected
 ⁵⁶Ni/⁵⁶Co in a dozen of SN Ia
 - ⁴⁴Ti radioactivity from all young
 Galactic SNRs & SN 1987A
 - Deep survey of the ²⁶Al, ⁶⁰Fe and positron annihilation radiations

e-ASTROGAM observatory in context

Measurement principle

- Tracker Double sided Si strip detectors (DSSDs) for excellent spectral resolution and fine 3-D position resolution
- Calorimeter High-Z material for an efficient absorption of the scattered photon ⇒ CsI(TI) scintillation crystals readout by Si Drift Diodes for better energy resolution
- Anticoincidence detector to veto charged-particle induced background ⇒ plastic scintillators readout by Si photomultipliers

e-ASTROGAM payload

Detail of the detector-ASIC bonding in the AGILE Si Tracker

- Tracker: 56 layers of 4 times 5×5 DSSDs (5600 in total) of 500 μm thickness and 240 μm pitch
- DSSDs bonded strip to strip to form 5×5 ladders
- Light and stiff mechanical structure
- Ultra low-noise front end electronics

- Calorimeter: 33 856 CsI(Tl) bars coupled at both ends to low-noise Silicon Drift Detectors
- ACD: segmented plastic scintillators coupled to SiPM by optical fibers
- Heritage: AGILE, Fermi/LAT, AMS-02, INTEGRAL, LHC/ALICE...

Satellite and mission profile

- Platform Thales Alenia Space PROTEUS 800 (SWOT CNES/NASA)
- Orbit Equatorial (inclination i < 2.5°, eccentricity e < 0.01) low-Earth orbit (altitude in the range 550 600 km)
- Launcher Ariane 6.2
- Observation modes (i) zenith-pointing sky-scanning mode, (ii) nearly inertial pointing, and (iii) fast repointing to avoid the Earth in the field of view
- In-orbit operation 3 years duration + provisions for a 2+ year extension

15

e-ASTROGAM Collaboration

from institutions in 24 countries; Science White Book just published (224 authors; 194 pages)

16

V. Tatischeff

Probing quantum spacetime: the CTA era and beyond

All-sky Medium Energy Gamma-ray Observatory

NASA/GSFC, G. Wash. Univ., Clemson Univ., NRL, UC Berkeley, Wash. Univ., UNH, NASA/MSFC, UAH, USRA, OSU, UIUC, UNLV, UDel, UCSC, SLAC, Stanford, UNF, Yale, RICE, INFN, Pisa Univ., Padova Univ., Stockholm Univ., INAF, LIP, Udine Univ., Rome Univ., CSNSM

Si Tracker DSSD in 60 layers with 1 cm spacing. Strip pitch 0.5 mm.

Anticoincidence Detector

Plastic scintillator shell for charged particle rejection.

CZT Calorimeter

Drift configuration with single layer array of 0.6 cm x 0.6 cm x 2 cm bars surrounding lower tracker layers.

Csl Calorimeter

Hodoscopic arrangement of 1.5 cm x 1.5 cm CsI bars in 6 layers with SiPM sensors.

Mission and spacecraft design can build on development for ComPair

Designed for a NASA Probe mission

• THESEUS is a submitted project to ESA for the M5 slot. The expected selection for phase A will be announced early 2018, for an expected launch date as early as 2029.

• THESEUS Core Science is based on two pillars:

- o probe the **physical properties of the early Universe**, by discovering and exploiting the population of high redshift GRBs.
- o provide an unprecedented deep monitoring of the soft X-ray transient Universe, providing a fundamental contribution to multi-messenger and time domain astrophysics in the early 2030s (synergy with aLIGO/aVirgo, eLISA, ET, Km3NET and EM facilities e.g., LSST, E-ELT, SKA, CTA, ATHENA).

THESEUS Payload

- Autonomous platform, with rapid repointing capabilities
- Low Earth Orbit (~600 km), low inclination (<5°)
- Fast ground communication for alert dissemination

Soft X-ray Imager: a set of four « Lobster Eye » telescope with an overall field of view of 1 sr, <arcmin localization accuracy, working in the 0.3-6 keV energy range. One order of magnitude more sensitive than previous wide field instruments. Provided by an UK led consortium

X-Gamma ray Imaging Spectrometer: three coded mask telescopes with a focal plane composed by a combination of Si and CsI detectors (possibility of polarization measurements). Sensitive in the 2 keV to 20 MeV, with an (up to) 4 sr field of view, a source location accuracy of 5 arc min. Provided by a consortium led by Italy.

Near Infra-Red Telescope for rapid on-board follow-up with a 0.7 m primary mirror, sensitive in the 0.7-1.8 μ m range, with a 10x10 arc min field of view and moderate spectroscopic capabilities (goal of 500). Provided by a consortium lead by France.

http://www.isdc.unige.ch/theseus/

