

The Cherenkov Telescope Array

CTA & its Key Science Projects

The CTA Consortium^{*} repr. by Jonathan BITEAU Institut de Physique Nucléaire d'Orsay (IPNO)

*: see http://www.cta-observatory.org/consortium_authors/authors_2017_10.html for full author list

Why?

Lessons learned and open questions

How?

Making the most of ground-based gamma-ray observations

Core Science

The Key Science Projects of CTA

The CTA Community

Observatory - Consortium - Guest Observers & co.-I's

Status of CTA

Timeline – CTA is now!

Major TeV facilities

Evolution the TeV sky

1989 - early 2000s

Childhood of gamma-ray astronomy, triggered by Whipple \rightarrow Crab Nebula + \sim 5 AGNs

2003-Now

Growth triggered by H.E.S.S./MAGIC (2003), VERITAS (2007), and more recently HAWC (2015) \rightarrow >200 sources! A much-larger-than-expected variety of objects!

TeV Astronomy: Nature & Science

TeV Astronomy: Nature & Science

TeV Astronomy: Nature & Science

Crab Pulsar

. Observation of Pulsed y-Rays Above 25 GeV from the Crab Pulsar with MAGIC, Science 322, 1221 (2008)

Detection of Pulsed Gamma Rays Above 100 GeV from the Crab Pulsar, Science 334, 69 (2011)

Starburst M82 Nature 462, 770 (2009) A connection between star formation activity and cosmic rays in the starburst galaxy M82

Starburst NGC 253 Science 326,1080 (2009) Detection of Gamma Rays from a Starburst Galaxy

EBL Science 320, 752 (2008) 204 HESS & MANAS VHE y-rays from a Distant Quasar: How Transparent Is the Universe?

AGN M87 Science 325, 444 (2009) Radio Imaging of the VHE y-Ray Emission Region in the Central Engine of a Radio Gala

Access to the full sky

Precision Č measurements

Imaging Atmospheric Č Technique 1 TeV km proton 0.3 TeV a. Shape of the shower \rightarrow bckgd rejection y ray b. Size of the shower \rightarrow energy estimator 20 c. (Time gradient \rightarrow direction estimator) Multiplicity is key Coincidence from ++ telescopes Today → \rightarrow precision on a, b, **c** Tomorrov 10 **Telescope Size** Low-energy y rays: fainter Č signal \rightarrow Large mirrors Array 100 m High-energy v rays: Scarcer (PWL spectra)

J. Biteau – LIV workshop @ LPNHE – 2017-11-30

 \rightarrow Large array layout

Brute-force solution

In an ideal world, with an infinite budget:

Pave kilometer-square areas with large telescopes, every ~100m (Č ground imprint)

Optimized layout

Shower-based optimization

LST (~23m): low E ~20-200 GeV - MSTs: mid E ~0.2-2 TeV - SSTs: high E >2 TeV

Key performance

Observation modes

Deep field

Optimal performance → particularly important for faint objects / highest-quality observation

Observation modes

Survey

Divergent pointing option → trade-off between sensitivity for a fixed livetime vs energy & angular resolution

Observation modes

Snapshot

Monitor ++ objects at the same time → repoint towards the 'bursting' one in < 50s for LSTs, < 90s for MSTs, SSTs

telescope

CTA - Core Science

J. Biteau – LIV workshop @ LPNHE

Sep 201

cherenkov telescope array

Science

with the Cherenkov Telescope Array

19/36

Key Questions

Understanding the Origin and Role of Relativistic Cosmic Particles

- . What are the sites of high-energy particle acceleration in the universe?
- . What are the mechanisms for cosmic particle acceleration?
- . What role do accelerated particles play in feedback on star formation and galaxy evolution?

Probing Extreme Environments

- . What physical processes are at work close to neutron stars and black holes?
- . What are the characteristics of relativistic jets, winds and explosions?
- . How intense are radiation fields and magnetic fields in cosmic voids? What is their evolution?

Exploring Frontiers in Physics

- . What is the nature of dark matter? How is it distributed?
- . Are there quantum gravitational effects on photon propagation?
- . Do axion-like particles exist?

Key Science Projects

Theme		Question	Dark Matter Programme	Galactic Centre Survey	Galactic Plane Survey	LMC Survey	Extra- galactic Survey	Transients	Cosmic Ray PeVatrons	Star-forming Systems	Active Galactic Nuclei	Galaxy Clusters
		What are the sites of high-energy particle acceleration in the universe?		v	~~	~~	~~	~~	v	v	v	~~
Understanding the Origin and Role of Relativistic Cosmic	1.2	What are the mechanisms for cosmic particle acceleration?		v	v	V		~~	~~	r	~~	v
Particles	1.3	What role do accelerated particles play in feedback on star formation and galaxy evolution?		r		~				~~	~	v
Probing Extreme Environments	2.1	What physical processes are at work close to neutron stars and black holes?		~	~	~			~~		~~	
	2.2	What are the characteristics of relativistic jets, winds and explosions?		~	r	~	~	~~	~~		~~	
	2.3	How intense are radiation fields and magnetic fields in cosmic voids, and how do these evolve over cosmic time?					~	~			~~	
Exploring Frontiers in Physics	3.1	What is the nature of Dark Matter? How is it distributed?	~~	~~		~						~
	3.2	Are there quantum gravitational effects on photon propagation?						~~	~		~~	
	3.3	Do Axion-like particles exist?					~	~			~~	

Large / deep surveys

High-quality imaging

Field of view & Angular resolution

High-quality imaging

Field of view & Angular resolution

Large Magellanic Cloud Survey - 250h

Face-on, dozen srcs incl. SN 1987A, superbubble, 2 powerful pulsars

Star-forming systems - GPS + 450h: M31, NGC253, M82, Arp220

From stellar clusters to starburst glaxies

counts/pixe

High-quality spectra

Energy dispersion

Cosmic-ray Pevatrons - 300h

RX J1713.7-3946 + 5 candidate PeVatrons detected in the Galactic Plane Survey

Active Galactic Nuclei - 300h on high-quality spectra + M87/CenA

~40 objects targeted: $\frac{3}{4}$ already detected at TeV energies + $\frac{1}{4}$ based on *Fermi*-LAT extrapolations Crab (MAGIC) \rightarrow acceleration & radiative processes + propagation (EBL & IGMF) PKS0625-35 (z = 0.06)PG 1218+304 (z = 0.184)E² dN/dE (TeV cm⁻² s⁻¹) E^2 dN/dE (TeV cm⁻² s⁻¹ PKS 1958-179 (z = 0.65) 10-10 PKS 0537-441 (z = 0.892) PKS0625-35 (with 10TeV cutoff) PG 1218+304 (with 10TeV cutoff) 10-1 10-12 10-12 $\begin{array}{l} \mathsf{E}_{\mathrm{cut}} = \mathsf{10} \; \mathsf{TeV} \\ \mathsf{E}_{\mathrm{cut}} = \mathsf{100} \; \mathsf{TeV} \end{array}$ 10^{-13} 10-13 $E_{cut} = 200 \text{ TeV}$ 10⁻¹ 10^{2} 0.2 10 0.02 0.1 2 3 4 5 6 10 20 Energy E(TeV) energy E(TeV) J. Biteau - LIV workshop @ LPNHE - 2017-11-30

25/36

Transients & Outbursts

Effective area and Slewing

Crab SED during Flare

Transients - 2000h (full-array follow-up) Galactic transients, GRBs, MWL, v & GW, self-triggered transients

Active Galactic Nuclei - 1500h (long-term monitoring) + sub-array snapshot / follow-up + 1200 h (full-array follow-up) . Variability of AGNs (FSRQs, BL Lacs, radio galaxies) on all time scales . New classes of TeV AGN → NLSy1?

Triggers to the outside world: < 1 min

Astrophysics & beyond

Possible discoveries in fundamental physics!

Galaxy clusters - 300h on Perseus Perseus: structure formation shocks + cosmic-ray content of the intra-cluster medium + NGC 1275 & IC 310 + decaying DM and γ -WISPs (axion-like) coupling

Dark Matter Program - GC + dSphs(300h) + 700h Down to the thermal cross section for WIMPs

Lorentz Invariance Violation

E-dependent delays

Probed by the combination of AGN flares (AGN KSP), GRBs (Transients KSP) and pulsars (GPS & LMC?)

Threshold effects Probed by the high-quality spectra of AGN (AGN KSP)

Biteau - LIV workshop @ LPNHE - 2017-11-30

Energy (TeV)

cherenkov telescope array

The CTA Community

J. Biteau - LIV workshop @ LPNHE - 2017-11-30

CTA Users

The CTA Observatory

First true open observatory for very-high-energy gamma-ray astronomy

Time distribution

40% Key Science Project (CTA Consortium) 10% Host-country time

50% User time

Annual Guest Observer proposals, with P.I. from participating countries

Open data

High-level data accessible after a one-year proprietary period

High-level Archival product Data Users Users

Open Time Users

CTA Consortium Key Science Projects

CTA Users

The CTA Consortium

32 countries, 92 parties, 208 parties: 1402 members (480 FTE) as of May 2017 Definition of the project and of its component - definition of the Key Science Projects Release of catalogs, maps, likelihood/posterior profiles...

J. Biteau - LIV workshop @ LPNHE - 2017-11-30

Guest observers

CTA Users

Estimated Co-Is of guest-observer proposals O(5000). CTA \rightarrow data products and support.

J. Biteau – LIV workshop @ LPNHE – 2017-11-30

Archival

Data

Users

Archival data and high-level-product users

Co-authors of archive-based publications $\sim O(10,000)$

Wide community engaged through a series of workshops (astropart., astro, part. phys.)

CTA Users

2014	2015	2010	2017	2018	2019	2020	2021	2022	21023	2024	2025	
_ ←	CTA Pr	ototypes	⇒	-		Science V	/erification =	⇒ User Oper	ration)	
Low Frequ	ency Radi	, i	-					-				
LOFAR	activy riddi										- i	
MWA			[MWA	(upgrade))	;		:			
	VLITE on JV	LA	>	(~2018? LO	BO)							
Mid-Hi Fre	quency Ra	dio	<u> </u>	FAST								
JVLA, V	LBA, eMerlin	, ATCA, EV	'N, JVN, KV	N, VERA, L	BA, GBT(n	nany other si	naller faciliti	es)				
ASKAP	Marrietar	CV A Diam	. 1			\rightarrow						
	:	SKA Flas	:				18.2 (1 - 0.6-					
(sub)Millin	neter Radio	ה				OBA	1&2 (LOWIN					
JCMT, J	LLAMA, LMI	, IRAM, N	DEMA, SMA	, SMT, SPT	Nanten2, Mo	pra, Nobeya	ma (many	other smaller	facilities)			
ALMA	(2	
	EHT	(protot	pe _> tull o	ps)								
Optical Tr	ansient Fa	ctories/Tr	ansient F	inders		1						
iPaloma	r Transient Fa	ctory	->(~2017	Zwicky TF		(1.55	T (buildup to	full survey n	node)			
PanSTA	RRS1 -> Par	STARRS2	CEM Mar	plicht cingle	dich prototen							
		Colac	:	i nent singte	usii prototyp	2010)						
Optical/IR	Large Faci	lities	<u> </u>									
VLT, Ke	ek, GTC, Gen	imi, Magell	m(many c	ther smaller	facilities)					(WFIRST	
	:	:	:	:	JWST						GMT	
X-ray								ELT (full ope	ration 2024)	& TMT (time	line less clear)?	
Swift (in	icl. UV/optical)										
XMM &	: Chandra											
NuSTAE	2	TROCIT					(IXPE				ATHENA (2028	ล
		STROSAL		FT						5		
			NIC	ER		:	(XA	RM			;	
	1	1		: (eRO	SITA						5	
Gamma-ra	ny 🛛						SVOM (incl. soft gam	ma-ray + op	tical ground e	lements)	
INTEG	RAL											
Fermi	TIANC	_	_		_							nroduct.
	HAWC	DAMPE		_	_	_	_	,		•	(2025+)	
O			-	1	LHAAS	D	_					
Grav. Wav	Advanced	LIGO + A	dvanced VII	GO (2017)		(_ungrada	to include I I	GO India)			Einstein Tel.?	
	- Advanced	1400 +A	uranceu vii		(KAG	RA RA	to mendue Li					Users
Neutrinos	E.		(07) (07) (07)			:	:	:	:			
ANTADES		IceCul	E (SINCE 2)			FRANC	T 2 (ABCA)	-			ICeCube-Gen2? =	
ANIARES		:	-	:	:	RAISINE			:			
UHE Cosn	nic Rays	:							1			
		Telescope A	ray ⇒	upgrade	to TAx4		n					
L		Pierre Au	ger Observa	tory	⇒ upgra	ae to Auger	rrime	_				

CTA Timeline

Status of the sites

The CTA Observatory

Active work ongoing on both sites for the deployment of the array

Cherenkov Telescope Array Site

<image>

LST 1 in real time: http://webcam.lst1.iac.es/stream2view.htm

J. Biteau – LIV workshop @ LPNHE – 2017-11-30