Leyre Nogués, Tony T.Y. Lin, Cedric Perennes, Alasdair E. Gent, Julien Bolmont, Markus Gaug, Agnieszka Jacholkowska, Manel Martinez, A.Nepomuk Otte, Robert M. Wagner, John E. Ward, Benjamin Zitzer for the LIV Consortium

July 19,2017

Outline

- 1 Introduction
 - Lorentz Invariance Violation
 - LIV experimental study
- 2 Methodology
 - Maximum Likelihood Analysis
 - ML Combined Analysis
- 3 Simulations
 - Simulation procedure
 - Simulated distributions
- 4 Results on LIV and QG limits
 - Stack of results
 - Energy limits

- Introduction

Lorentz Invariance Violation

Lorentz Invariance Violation

- **Theory** Aim to build a common theory covering General Relativity and Quantum Mechanics.
- Different approaches, leading to modified dispersion relations inducing LIV.
 - Loop Quantum Gravity.
 - SM extension.
 - Hôrawa's gravity.

Experiment - prove Quantum effects in Space-time structure.
Example: Time-Of-Flight Studies.

$$E^2 \simeq p^2 c^2 \times \left[1 - \sum_{n=1}^{\infty} \pm \left(\frac{E}{E_{QG}}\right)^n\right],$$

- Introduction

LIV experimental study

LIV experimental study

The ToF studies - opportunity to the experimental gamma-ray sector.

- Proportional to Eⁿ and redshift.
- \blacksquare Fast, variable, very energetic, distant sources \rightarrow Gamma-rays source options.
 - Pulsars, AGNs, GRBs.
- Associated challenges to the study.
 - Low statistic data sets.
 - Few adequate sources for the study.
 - EBL absorption of very energetic photons.
- Solution Combination between experiments.
 - Increase of the statistics.
 - Intrinsic effects and redshift dependence study.
 - LIV multi-type source combination.

- Introduction
 - LIV current limits

- Methodology
 - Maximum Likelihood Analysis

Methodology

Maximum Likelihood analysis (ML) is very adequate

- Supports very low photon statistics.
- Any complex temporal distribution is allowed.
- Unbinned method: maximum use of information.
- Can be adapted in different ways.

Maximization of Likelihood source function.

- Likelihood is created from the event PDFs of the source emission.
- One estimator parameter and some optional nuisance parameters.

$$\frac{dP}{dEdt} = N \int_0^\infty \Gamma(E_s) C(E_s, t) G(E - E_s, \sigma_E(E_s)) F_s(t - D(E_s, E_{QGn}, z)) dE_s.$$

- Methodology

-ML Combined Analysi

ML Combined Analysis

Every source has a Likelihood function - the combination of several of them is straightforward.

- **1** They must share a common estimator parameter.
- 2 The estimator has to be redshift independent.

$$L_{Comb}(\lambda) = \prod_{i=1}^{Nsource} L_i(\lambda) \longrightarrow -2log(L_{Comb}(\lambda)) = -2\sum_{i=1}^{Nsource} log(L_i(\lambda)),$$

Typically each likelihood function has a parabolic shape in logarithmic scale.

- Look for the minimum in negative logarithmic scale.
- Easy CLs computation.

Simulations

Simulation procedure

Simulation procedure

Simulated sources for the study.

- Mrk 501 2005 flare detected by MAGIC.
- **PG 1553+113** 2012 flare detected by H.E.S.S.
- **PKS 2155-304** 2006 flare detected by H.E.S.S.
- VHE Crab Pulsar radiation detected by VERITAS.

Simulation steps

- 990 simulation sets of each source.
- E_{true} and t_{true}/ϕ_{true} from parametrized published data.
- Injection of LIV effect ($\Delta t \propto E^n$)
- Application of IRFs to obtained measured values.

Simulations

Simulated distributions

Results on LIV and QG limits

-Stack of results

The analysis, applied over the 990 sets of simulations, uses λ as a fit parameter, that is related to the QG energy scale E_{QG} ,

$$egin{aligned} & rac{\Delta t_n}{E_n^n-E_l^n}\simeq s_\pm\,rac{n+1}{2\,H_0}\,rac{1}{E_{QG}^n}\int_0^zrac{(1+z')^n}{\sqrt{\Omega_m\,(1+z')^3+\Omega_\Lambda}}\,dz'=s_\pm\,rac{n+1}{2\,H_0}\,rac{1}{E_{QG}^n\,\kappa(z)},\ & \lambda=rac{\Delta t_n}{\Delta E^n\kappa(z)}=rac{1}{E_{QG}H_0}, \end{aligned}$$

From every analysis, for individual and combined cases and for linear and quadratic case, we get:

- Distribution of best fit value of the parameter λ .
- Distribution of 1-sided 95% CLs.
- Upper limits on E_{QG}.

Results on LIV and QG limits

Stack of results

Results on LIV and QG limits

└─Stack of results

 Results on LIV and QG limits

└─Stack of results

Parameter	PKS 2155	Mrk 501	PG 1553	Crab	Combination
$\lambda_{best} (s/TeV)$	-4.5±2.6	4.9 ± 5.6	-11.3±13.4	-5.4±4.7	-2.37±2.2
1σ CL (s/TeV)	84.6±2.1	168.6±4.4	412.0±9.7	146.0±3.8	67.6±1.6
$\lambda_{LL} (s/TeV)$	-154.9	-296.6	-687.7	-254.2	-118.2
RMS_{LL} (s/TeV)	88.8	169.9	414.5	150.4	67.52
$\lambda_{UL} (s/TeV)$	142.5	299.5	658.6	244.7	117.8
RMS _{UL} (s/TeV)	83.72	171.6	421.4	151.3	66.1

Parameter	PKS 2155	Mrk 501	PG 1553	Crab	Combination
$\lambda_{best} (s/TeV^2)$	$1.3{\pm}1.9$	-0.8 ± 1.1	$1.0{\pm}17.5$	3.8±6.4	-0.6±0.9
1σ CL (s/TeV ²)	59.8±1.7	$31.85{\pm}1.0$	533.7±13.2	$189.5{\pm}5.6$	$26.7{\pm}0.7$
$\lambda_{LL} (s/TeV^2)$	-104.4	-59.2	-912.1	-326.6	-49.5
RMS_{LL} (s/TeV ²)	69.2	33.2	542.1	351.0	28.9
$\lambda_{UL} (s/TeV^2)$	100.0	56.8	921.1	354.2	48.1
RMS_{UL} (s/TeV ²)	67.9	34.1	554.2	355.0	28.0

Results on LIV and QG limits

Energy limits

Source	$E_{QG_linear}(10^{18}GeV)$	$E_{QG_Quadratic}(10^{10}GeV)$	Redshift
PKS 2155	1.86	6.20	0.116
Mrk 501	0.91	8.57	0.034
PG 1553	0.38	2.08	0.5
Crab	1.07	4.14	2kpc
Combination	2.31	9.34	-

Conclusions and prospects

Conclusions and prospects

- Combination Improvement visible at λ parameter level.
- Energy limits.
 - Linear
 - Dominated by the PKS 2155-304 limit.
 - Combination 24% improvement respect to best individual case.
 - Quadratic
 - Dominated by Mrk 501 limit.
 - Combination 10% improvement respect to best individual case.
- PG 1553 contributes with redshift and Crab Pulsar with statistics.
- The list of used sources constantly increasing with publications.
- Predictions and preparation for Cherenkov Telescope Array (CTA).

Case $\lambda \neq 0$ for AGN combination.

Systematic effects

Limits and CLs in presence of Nuisance Parameters. Procedure in construction will follow. *Rolke, Lopez & Conrad (2009) arXiv:040359*

Systematic uncertainties	Typical range per source (%)	
Selection cuts	5 - 10	
Background contribution	1 - 5	
Acceptance factors	2 - 5	
Energy resolution	2 - 5	
Energy calibration	10	
Spectral index	5	
Calibration systematics (constant, shift)	10	
Time template parametrization	5 - 30	

Due to limited statistics for certain sources:

Time template uncertainties \rightarrow dominate systematic, effects, $a \rightarrow b \rightarrow b$

Combination plots - Linear case

Combination plots - Quadratic case

