LIV WORKSHOP PARIS 2017 SEARCHING FOR LIV WITH VERITAS

Tony T.Y. Lin on behalf of VERITAS collaboration

*Image credit Dr. John Quinn

OUTLINE

- Introduction to VERITAS
- Highlights from recent results
- LIV studies in VERITAS

VERY ENERGETIC RADIATION IMAGING TELESCOPE ARRAY SYSTEM

- Located at south of Tucson, Arizona, USA
- Full operation since 2007.
- Collaboration of ~100 scientist from ~ 20 institutions from 4 countries.
- 4 X 12 m Davies-Cotton type telescopes.
- Camera composed of 499 PMTs.

VERITAS UPGRADES

- Move of T1 in Summer 2009
 - Optimal array configuration with increased sensitivity
- Telescope-Level trigger upgrade in Fall 2011
 - Moved to FPGA based trigger system
 - Narrower coincidence window
- Camera upgrade in Summer 2012
 - Higher QE PMTs
 - Lower energy threshold.

PERFORMANCE

- Energy Range: 85 GeV to 30 TeV
- Energy Resolution: 15~25%
- Angular Resolution 0.08 deg @ 1 TeV
- Sensitivity 1% Crab in 25 hr
- Systematic Errors:
 - Flux ~20% Index ~0.1
- Bright moonlight programs using reduced HV or moon filter adding extra 300 hr per year of observation.

SCIENCE PROGRAMS

• Extra galactic science

- Active Galactic Nuclei (mostly Blazar)
- Extragalactic background light (EBL), intergalactic magnetic field (IGMF)
- Galactic science
 - Galatic centre
 - CR acceleration: SNR, PWN
 - Pulsar
 - Binaries
- Dark Matter and astro-particle physics
 - Dark Matter: Galactic centre, dwarf galaxies
 - Direct measurement of cosmic rays.
 - Cosmic ray electrons
 - Primordial black hole searches
- Follow up programs
 - GRBs
 - ICECUBE, LIGO, HAWK

HIGHLIGHT FROM RECENT RESULTS — INTER-GALACTIC MAGNETIC FIELD CONSTRAINTS

- Inter-galactic magnetic field (IGMF):
 - Very week magnetic field:10⁻¹⁹ -10⁻⁹ G
 - Affects large-scale structure formation
 - Potential primordial origin —> early universe cosmology
- IGMF imprint on high-energy γ -ray
 - γ-ray pair produce with EBL
 - e⁺e⁻ deflected by IGMF
 - A broadened angular profile from extra galactic point sources (B > 10⁻¹⁶ G).

→ $\gamma \gamma_{EBL}$ → e+e- deflected by IGMF → $e \gamma_{CMB}$ → $e \gamma$ (inverse Compton)

Three signatures:

Spectral energy distribution Angular profile Arrival time

HIGHLIGHT FROM RECENT RESULTS — INTER-GALACTIC MAGNETIC FIELD CONSTRAINTS

- Seven blazars studied for evidence of angular extension due to IGMF.
- Fit simulation and observation with hyperbolic secant function.
- Total Emission = (1 -fc)* primary emission + fc*cascade emission
- Halo test for 1ES1218+304 used to constrain IGMF around 10-14 G.

ApJ **835**, 288 (2017)

HIGHLIGHT FROM RECENT RESULTS — COSMIC RAY IRON SPECTRUM

- Direct Cherenkov light technique
 - Cherenkov light from primary particle — very concentrated.
 - Intensity scale with Z²
 - Can use to identify heavy nuclei
- Template method used to identify DC showers.
 - Better sensitivity for high energy events.
- Result feed into Random Forest for event classification.

HIGHLIGHT FROM RECENT RESULTS — COSMIC RAY IRON SPECTRUM

- Measurement consistent with other experiment (IACTs, balloons)
- Extend spectrum up to 500 TeV.

LIV STUDIES IN VERITAS

CRAB PULSAR

- Pulsing at mili-second time scale; compensating for lack of distance.
- Pros:
 - Statistics can be accumulated overtime.
 - Intrinsic effect can be distinguished
- Challenges:
 - Large background (PWN emission + hadronic showers).
- VERITAS has accumulated ~ 300 hr of quality data on the Crab.

CRAB PULSAR: DIRECT COMPARISON WITH FERMI

- Directly compare with Fermi phaseogram to look for peak shift.
- The 95% confidence upper limit on the timing differences of the peaks is calculated to be less than 100 µs.
- Translate to QG energy scale limit of 3X 10¹⁷GeV at 95% confidence level for linear case.

$$E_{QG1} > \frac{d\Delta E}{c_0 \Delta t_{95\%}} = \frac{2 \text{kpc} * 120 \text{GeV}}{3 \times 10^8 \text{m/s} * 100 \mu \text{s}} \sim 3 \times 10^{17} \text{GeV}$$
(4)

arXiv:1307.8382v1

DISPERSION CANCELLATION (DISCAN)

- LIV broadens the pulse shape and make the pulse profile less "sharp" lacksquare
- Adjust QG energy scale to maximize a "sharpness" metric (Z² Test) : $Z_m^2 = \frac{2}{N} \sum_{i=1}^m [(\sum_{j=1}^N \sin(2\pi\phi_j j))^2 + (\sum_{j=1}^N \cos(2\pi\phi_j j))^2]$ \bullet

CRAB PULSAR USING DIS-CAN

- Un-binned analysis.
- Use all photons and independent of the pulse shape.
- Extract limits from simulations.
- Sub-luminal linear limit :
 - 1.9X 10¹⁷GeV

IN PROGRESS— CRAB PULSAR USING MAXIMUM LIKELIHOOD

- Use low energy events to build temporal profile.
- Add data from 2014 to 2017 (additional 100 hr of data).
- Combine with AGN limits from HESS and MAGIC.

16

SUMMARY & PROSPECT

- VERITAS continues to run smoothly and maintains sensitivity.
- Diverse scientific program
 - 70% Observing plan dedicated to long-term planning
 - 30% Observing time open to new proposal.
- On LIV front, VERITAS wasn't as lucky in catching fast flares in the past; but we have Crab observation and more data are being accumulated.
- Other type of potential sources of interest:
 - GRB
 - Fast Radio Burst (FRB)

Thank You!

FAST RADIO BURST

- Mili-second duration burst of high dispersion measure (likely of extragalactic origin) .
- First discovered in 2007 in archived data in 2001 at Parks Radio Telescope.
- FRB121102 : repeating FRB with ~ 11 hr of VERITAS observation (~6 hrs of simultaneous observation with Arecibo).
- No steady VHE emission detected.
- Pulsed VF

