

Models of γ -ray emission from active galactic nuclei

Matteo Cerruti CNRS, LPNHE, Paris

Paris	
29/11/17	

ACTIVE GALACTIC NUCLEUS

Observational effect of interaction of matter with a super-massive black-hole ($M_{\odot} \sim 10^{8-9} M_{\odot}$)

Key features:

- Accretion disk
- Dusty torus
- Ionized clouds (Broad-Line & Narrow-Line Regions)

All different AGN observational classes are driven by the orientation of the system with respect to the Earth

ACTIVE GALACTIC NUCLEUS

Observational effect of interaction of matter with a super-massive black-hole ($M_{\bullet} \sim 10^{8-9} M_{\odot}$)

Key features:

- Accretion disk
- Dusty torus
- Ionized clouds (Broad-Line & Narrow-Line Regions)

Dichotomy in observations:

- Radio-loud (~15%): f_{rad}/f_{opt} flux > 10
- Radio-quiet all the rest

The presence/absence of an outflow in the form of a highly collimated relativistic jet explains the radio dichotomy (does the black hole spin play a role?)

BLAZARS

Blazar : radio-loud AGN whose relativistic jet points in the direction of the observer

→ emission from the jet dominates over any other AGN component (the disk, the BLR, the X-ray corona,...)

→ non-thermal emission from radio to gamma-rays, and extreme variability

Flat-Spectrum-Radio-Quasars: optical spectrum with broad emission lines
BL Lacertae objects : optical spectrum featureless

γ-LOUD AGN

From 3FGL : the extragalactic γ -ray sky is dominated by AGN

γ-LOUD AGN

Table 6 LAT 3FGL Source Classes

Description	Identified		Associated	
	Designator	Number	Designator	Number
Pulsar, identified by	PSR	143		
pulsations				
Pulsar, no pulsations seen in LAT yet			psr	24
Pulsar wind nebula	PWN	9	pwn	2
Supernova remnant	SNR	12	snr	11
Supernova remnant/pul- sar wind nebula			spp	49
Globular cluster	GLC	0	glc	15
High-mass binary	HMB	3	hmb	0
Binary	BIN	1	bin	0
Nova	NOV	1	nov	0
Star-forming region	SFR	1	sfr	0
Compact steep spectrum quasar	CSS	0	CSS	
BL Lac type of blazar	BLL	18	ы	642
FSRQ type of blazar	FSRQ	38	fsrq	446
Non-blazar active galaxy	AGN	0	agn	3
Radio galaxy	RDG	3	rdg	12
Seyfert galaxy	SEY	0	sey	1
Blazar candidate of uncertain type	BCU	5	bcu	568
Normal galaxy (or part)	GAL	2	gal	1
Starburst galaxy	SBG	0	sbg	4
Narrow-line Seyfert 1	NLSY1	2	nlsy1	3
Soft-spectrum radio quasar	SSRQ	0	ssrq	3
Total		238		1785
Unassociated				1010

The γ -loud AGN are essentially:

- blazars (or blazar candidates)

- few nearby radio-galaxies

BLAZARS

Fossati et al. 1998

Spectral energy distribution (SED) two distinct components

FSRQs show a peak in IR

BL Lac objects are classified in:

 peak in optical : Low-frequency peaked (LBLs)

• peak en UV/X : High-frequency peaked (HBLs)

• peak >10 KeV : Ultra-highfrequency peaked (UHBLs)

BLAZARS

In whichever band you observe, you 'select' a blazar with a given peak frequency

 \rightarrow Radio blazar catalogs and X-ray blazar catalogs don't 100% overlap!

At TeV energies we are dominated by *high-frequency-peaked blazars*

Fossati et al. 1998

THE TeV SKY

THE TeV SKY

Scenario A: emission at the source

A1: stationary* emission (i.e. study of MWL SED)

A2: flaring emission (i.e. study of MWL light-curves) (few words only! See next talk)

Scenario B: emission in the line of sight

* stationary = not flaring / slowly varying (i.e. there's no "ground base" emission)

Low energy bump (radio-to-X)

IS synchrotron emission by leptons

- spectral properties match well theoretical predictions (index, lowenergy cutoff)

- polarization measurements

High energy bump (X-to-gamma)

Leptonic vs Hadronic

- leptonic scenario: inverse Compton scattering

Same leptons producing synchrotron + their own synchrotron radiation (SSC)

+ an external photon field (EIC)

General consensus on the fact that HBLs \rightarrow SSC LBLs , FSRQs \rightarrow EIC

Leptonic modeling of HBLs (one-zone synchrotron self-Compton)

Can be fully constrained if the two SED components are well sampled → it works for HBLs, but

 - in several cases the electron distribution is NOT what we expect from shock acceleration + synchrotron cooling (more complex acceleration / escape / cooling mechanisms)

-for extreme HBLs, it requires high Doppler factor, and a low-energy cut-off in the electron distribution (no cold electrons?)

Leptonic modeling of LBLs/FSRQs (one-zone external-inverse Compton)

- Radiative output depends on the external photon field (and thus on the location of the emitting region)

- Too many free parameters: we need to make additional hypotheses to force a solution (i.e. impose equipartition, location in the jet, ...

Gamma-gamma pair-production at the source
- if emitting region at the jet basis, absorption on BLR → no VHE;
- if within a few pc, absorption on the torus → no multi-TeV

absorption on the torus \rightarrow no multi-TeV photons

High energy bump (X-to-gamma)

Leptonic vs Hadronic

- hadronic scenario:

proton synchrotron and/or emission by secondaries produced in $p+\gamma$ interactions

WHY HADRONS? Natural link with UHECR and neutrinos HADRONIC BLAZAR MODELING IS MULTI-MSN

Hadronic modeling of FSRQs:

Major problem is energetic we need energy in protons which is higher (by orders of magnitude) than the Eddington luminosity

Several authors came to the same conclusion: Sikora et al. 09, Zdziarski and Bottcher 15, Petropoulou and Dimitrakoudis 15, +++

N.B. Hadronic models can still be ok for flares!

Hadronic modeling can still work for HBLs and UHBLs with reasonable energy budget (i.e. at most L \sim L_{Edd})

UHBLs, interesting observing properties:

- * high-frequency SED peak in TeV band
- * NOT flaring!
- * if modelled with SSC scenario, they face some issues
 - Doppler factor is higher than for ,standard' HBLs
 - they require a high value of E_{min} for electrons

TeV UHBLs MODELING

Hadronic modeling of RGB J0710+591 (typical UHBL)

 $\delta = 30$

Cerruti et al 2015

Scenario A: emission at the source

A1: stationary emission (i.e. study of MWL SED)

A2: flaring emission (i.e. study of MWL light-curves)

Scenario B: emission in the line of sight

BLAZARS

Flares provide additional information to constrain models

Flares provide additional information to constrain models

What are the flares?

Simplest scenario: flaring and non-flaring activity is similar - same acceleration process -same emitting region -same radiative mechanism

The flare is a sudden increase in the particle injection

→ We can use what we learned from non-flaring SEDs concerning leptons/hadrons; radiative mechanisms

or... the emission during eruptions is INTRINSICALLY different (another emitting region located elsewhere; another radiation mechanism; another kind of particle)

Example: star-jet interaction models for the PKS 2155-304 flare (Barkov et al. 2012)

Stationary-state emission is SSC, Flare emission can be EIC, or hadronic

or... the emission during eruptions is INTRINSICALLY different (another emitting region located elsewhere; another radiation mechanism; another kind of particle)

Example: orphan gamma-ray flare ares more likely hadronic

Scenario A: emission at the source

A1: stationary emission (i.e. study of MWL SED)

A2: flaring emission (i.e. study of MWL light-curves)

Scenario B: emission in the line of sight

Propagation effects (beyond simple absorption on the EBL) can alter the gamma-ray emission

1) Pair-cascade in the line of sight can modify the g-ray spectrum (in the GeV band, depending on the strength of the IGMF)

Propagation effects (beyond simple absorption on the EBL) can alter the gamma-ray emission

2) If the AGN emits UHECR, emission along the line of sight can modify the g-ray emission (in the TeV band)

CONCLUSIONS

 γ -loud AGNs are mainly blazars

Non-flaring states:

origin of the γ -ray emission is -leptonic (External-Inverse-Compton) for FSRQs -leptonic (Synchrotron-Self-Compton) or hadronic for HBLs

Rapid flares:

Simplest scenario is to use what we learn from SED modeling, and vary injection (same processes for flaring and non-flaring)

But flaring and non-flaring emission may be different!

Keep in mind that propagation effects can affect γ -ray emission