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Observational effect of interaction 
of matter with a super-massive 
black-hole (M🌑 ~108-9 M☉)

Key features: 
   - Accretion disk
   - Dusty torus
   - Ionized clouds (Broad-Line &  

Narrow-Line Regions)   

All different AGN observational classes are driven by the orientation of 
the system with respect to the Earth                

ACTIVE GALACTIC NUCLEUS
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Observational effect of interaction 
of matter with a super-massive 
black-hole (M🌑 ~108-9 M☉)

Key features: 
   - Accretion disk
   - Dusty torus
   - Ionized clouds (Broad-Line &  

Narrow-Line Regions)   

Dichotomy in observations: 
● Radio-loud  (~15%): frad/fopt flux > 10 
● Radio-quiet  all the rest  

ACTIVE GALACTIC NUCLEUS

The presence/absence of an outflow in the form of a highly collimated 
relativistic jet explains the radio dichotomy
(does the black hole spin play a role?)  
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Blazar : radio-loud AGN whose 
relativistic jet points in the 
direction of the observer 

→ emission from the jet 
dominates over any other AGN 
component (the disk, the BLR, 
the X-ray corona,…) 

→ non-thermal emission from 
radio to gamma-rays, and 
extreme variability  

● Flat-Spectrum-Radio-Quasars:  optical spectrum with broad emission lines 
● BL Lacertae objects :                  optical spectrum featureless

BLAZARS
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From 3FGL : the extragalactic g-ray sky is dominated by AGN

g-LOUD AGN
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The g-loud AGN are essentially:

 
 - blazars (or blazar candidates) 
   

 - few nearby radio-galaxies

g-LOUD AGN
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Spectral energy distribution (SED)
 two distinct components

FSRQs show a peak in IR

BL Lac objects are classified in:

• peak in optical : Low-frequency 
peaked (LBLs)

• peak en UV/X : High-frequency 
peaked (HBLs)

• peak  >10 KeV : Ultra-high-
frequency peaked (UHBLs)

Fossati et al. 1998

BLAZARS
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In whichever band you observe, you 
‘select’ a blazar with a given peak 
frequency

→ Radio blazar catalogs and X-ray blazar 
catalogs don’t 100% overlap!

At TeV energies we are dominated by 
high-frequency-peaked blazars

                                                                

BLAZARS

Fossati et al. 1998



9

   

From TeVCAT 

Extragalactic TeV sky:

  2 starburst galaxies
  4 radio-galaxies
66 blazars

THE TeV SKY
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From TeVCAT 

Extragalactic TeV sky:
of these 66 blazars
  49 are HBLs
  11 are I/LBLs
    6 are FSRQs

THE TeV SKY
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TeV BLAZAR MODELING 

 Scenario A: emission at the source

A1: stationary* emission
(i.e. study of MWL SED)

A2: flaring emission
(i.e. study of MWL light-curves)
(few words only! See next talk)

Scenario B: emission in the line of sight

* stationary = not flaring / slowly varying 
(i.e. there’s no “ground base” emission) 
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TeV BLAZAR MODELING 

  Low energy bump 
(radio-to-X)

IS synchrotron emission by leptons

- spectral properties match well 
theoretical predictions (index, low-

energy cutoff)

- polarization measurements  
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TeV BLAZAR MODELING 

  High energy bump 
(X-to-gamma)

Leptonic vs Hadronic

- leptonic scenario: inverse 
Compton scattering 

Same leptons producing 
synchrotron 
+ their own synchrotron radiation 
(SSC)
+ an external photon field (EIC)

  
 General consensus on the fact that  HBLs → SSC 
                 LBLs , FSRQs → EIC  
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TeV BLAZAR MODELING 

Leptonic modeling of HBLs 
(one-zone synchrotron self-Compton)

 

Can be fully constrained if the two SED
components are well sampled
→ it works for HBLs, but

   
- in several cases the electron distribution is NOT 
what we expect from shock acceleration + 
synchrotron cooling (more complex 
acceleration / escape / cooling mechanisms)

  -for extreme HBLs, it requires high Doppler 
factor, and a low-energy cut-off in the electron 
distribution (no cold electrons?)   
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Leptonic modeling of HBLs 
(one-zone synchrotron self-Compton)

 

Can be fully constrained if the two SED
components are well sampled
→ it works for HBLs, but

   
- in several cases the electron distribution is NOT 
what we expect from shock acceleration + 
synchrotron cooling (more complex 
acceleration / escape / cooling mechanisms)

  -for extreme HBLs, it requires high Doppler 
factor, and a low-energy cut-off in the electron 
distribution (no cold electrons?)   

TeV BLAZAR MODELING 1ES 0229+200
VERITAS

PKS 0447-439
HESS

1ES 1011+496
MAGIC
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Leptonic modeling of LBLs/FSRQs 
(one-zone external-inverse Compton)

 

- Radiative output depends on the external 
photon field (and thus on the location of the 
emitting region)

- Too many free parameters: we need to make 
additional hypotheses to force a solution 
(i.e. impose equipartition, location in the jet, …)

 
Gamma-gamma pair-production at the source 
- if emitting region at the jet basis, 
        absorption on BLR → no VHE;
- if within a few pc, 
        absorption on the torus → no multi-TeV 
photons
   

TeV BLAZAR MODELING 
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TeV BLAZAR MODELING 

Leptonic modeling of LBLs/FSRQs 
(one-zone external-inverse Compton)

 

- Radiative output depends on the external 
photon field (and thus on the location of the 
emitting region)

- Too many free parameters: we need to make 
additional hypotheses to force a solution 
(i.e. impose equipartition, location in the jet, …)

 
Gamma-gamma pair-production at the source 
- if emitting region at the jet basis, 
        absorption on BLR → no VHE;
- if within a few pc, 
        absorption on the torus → no TeV photons
   

PKS 1441+25
VERITAS

PKS1510-089
MAGIC



18

TeV BLAZAR MODELING 

  High energy bump 
(X-to-gamma)

Leptonic vs Hadronic

- hadronic scenario:

 proton synchrotron and/or 
emission by secondaries produced 

in p+g interactions 

  
WHY HADRONS? Natural link with UHECR and neutrinos 

             HADRONIC BLAZAR MODELING IS MULTI-MSN   
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TeV BLAZAR MODELING 

Hadronic modeling of FSRQs:

    
 Major problem is energetic

 we need energy in protons which is higher
(by orders of magnitude)

 than the Eddington luminosity

Several authors came to the same conclusion: 
Sikora et al. 09, Zdziarski and Bottcher 15, 

Petropoulou and Dimitrakoudis 15,
+++ 

N.B. Hadronic models can still be ok for flares! 
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TeV BLAZAR MODELING 

Hadronic modeling can still work for HBLs and UHBLs with 
reasonable energy budget (i.e. at most L ~ LEdd)

UHBLs, interesting observing properties:

  * high-frequency SED peak in TeV band 
  * NOT flaring!
  * if modelled with SSC scenario, they face some issues
         - Doppler factor is higher than for ‚standard‘ HBLs 
         - they require a high value of Emin for electrons 
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TeV UHBLs MODELING 

Hadronic modeling of RGB J0710+591 (typical UHBL)

d = 30

 

   

Proton-synchrotron scenario
g

p,Max
 = 109-10 

L = 1045-47 erg s-1

Lepto-hadronic scenario
g

p,Max
 = 108 

L = 1046 erg s-1

Cerruti et al 2015

http://adsabs.harvard.edu/abs/2015MNRAS.448..910C
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TeV BLAZAR MODELING 

 Scenario A: emission at the source

A1: stationary emission
(i.e. study of MWL SED)

A2: flaring emission
(i.e. study of MWL light-curves)

Scenario B: emission in the line of sight
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Blazars are variable, at all wavelengths 
and on different timescales!

                                                                

BLAZARS

PKS 2155-304, 
HESS

BL Lac, VERITAS

IC 310, MAGIC

PKS 1441+25, 
MAGIC

1ES 1011+496,
MAGIC
1ES 1011+496,
MAGIC
1ES 1011+496,
MAGIC

1ES 1215+303
VERITAS
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TeV BLAZAR MODELING 

Flares provide additional information to constrain models

- fit of light-curves
- multi-wavelength correlations

- time-dependent SEDs 
    

PKS 2155-304
HESS
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TeV BLAZAR MODELING 

Flares provide additional information to constrain models

- fit of light-curves
- multi-wavelength correlations

- time-dependent SEDs 
    

Markarian 421
MAGIC & VERITAS
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TeV BLAZAR MODELING 

What are the flares?  

Simplest scenario: flaring and non-flaring activity is similar
- same acceleration process

-same emitting region
-same radiative mechanism

The flare is a sudden increase in the particle injection

→ We can use what we learned from non-flaring SEDs 
concerning leptons/hadrons; radiative mechanisms
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TeV BLAZAR MODELING 

      or… the emission during eruptions is INTRINSICALLY different 
(another emitting region located elsewhere; another radiation 
mechanism; another kind of particle)

Example: star-jet interaction models for the PKS 2155-304 flare
(Barkov et al. 2012)

Stationary-state emission is SSC,
                                                        Flare emission can be EIC, or 

 hadronic
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TeV BLAZAR MODELING 

      or… the emission during eruptions is INTRINSICALLY different 
(another emitting region located elsewhere; another radiation 
mechanism; another kind of particle)

Example: orphan gamma-ray flare ares more likely hadronic

    

1ES 1959+650
VERITAS

3C 279
HESS
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TeV BLAZAR MODELING 

 Scenario A: emission at the source

A1: stationary emission
(i.e. study of MWL SED)

A2: flaring emission
(i.e. study of MWL light-curves)

Scenario B: emission in the line of sight
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TeV BLAZAR MODELING 

Propagation effects (beyond simple absorption on the EBL)
can alter the gamma-ray emission

1) Pair-cascade in the line of sight can modify the g-ray spectrum 
    (in the GeV band, depending on the strength of the IGMF)
    

Dermer et al., 2011
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TeV BLAZAR MODELING 

Propagation effects (beyond simple absorption on the EBL)
can alter the gamma-ray emission

2) If the AGN emits UHECR, emission along the line of sight can 
modify the g-ray emission (in the TeV band) 
    

The CTA Consortium, 2017
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CONCLUSIONS 

g-loud AGNs are mainly blazars

Non-flaring states: 

origin of the g-ray emission is
-leptonic (External-Inverse-Compton) for FSRQs 

-leptonic (Synchrotron-Self-Compton) or hadronic for HBLs 

Rapid flares:

Simplest scenario is to use what we learn from SED modeling, and 
vary injection (same processes for flaring and non-flaring)

But flaring and non-flaring emission may be different!

Keep in mind that propagation effects can affect g-ray emission
 

 


