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Motivation for a composite Higgs 
An alternative solution to the hierarchy 
problem:  
• Generate a scale ΛHC<<Mpl through 

a new confining gauge group. 
• Interpret the Higgs as a pseudo-Nambu-

Goldstone boson (pNGB) of a spontaneously 
broken global symmetry of the new strong sector. 

The price to pay: 
• From the generic setup, one expects additional  

resonances (vectors, vector-like fermions, scalars) 
around ΛHC (and additional light pNGBs?). 

• The non-linear realization of the Higgs yields 
deviations of the Higgs couplings from their SM 
values. 

• …and many model-building questions …
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Some questions in composite Higgs models

• What are suitable underlying UV theories?  
• What are field content and global symmetries in the confined phase? 
• How are quark masses generated? 
• (How) can top-partners be light? 
• How can problems with FCNCs be avoided? 
• What are bounds from electroweak precision measurements? 
• What are the ``best’’ LHC search channels, optimized search strategies and 

tools, and what are the bounds and indication for 
• vector resonances 

• top- (or other quark-) partners 

• other composite resonances  
• modified Higgs couplings or signatures?
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Composite Higgs Models: 
Towards an underlying model 

and its low-energy phenomenology
Ferretti etal. [JHEP 1403, 077, arXiv:1604.06467] classified candidate models which: 
c.f. also Gherghetta etal (2014), Vecchi (2015) for early related works on individual models 

• contain no elementary scalars (to not re-introduce a hierarchy problem), 
• have a simple hyper-color group, 
• have a Higgs candidate amongst the pNGBs of the bound states, 
• have a top-partner amongst its bound states (for top mass via partial compositeness), 
• satisfy further “standard” consistency conditions (asymptotic freedom, no anomalies), 

The resulting models have several common features: 
• All models require two types of hyper-quarks 𝜓, 𝜒 . The Higgs is realized as a 𝜓𝜓  

bound state. Top partners are realized as 𝜓𝜓𝜒 or 𝜓𝜒𝜒 bound states. 
• None of the models has the minimal EW coset SO(5)/SO(4). The smallest EW cosets are 

instead SU(4)/Sp(4), SU(5)/SO(5), or SU(4)xSU(4)/SU(4). 
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BUT: There are two more common features of all models. 
1. All models contain colored pNGBs. In particular, all models contain a 

pNGB transforming as an octet of SU(3)c. 
                                [c.f. JHEP1511,201 for a first study on the phenomenology and bounds on colored pNGBs in CH UV embeddings.] 

2.  All models contain two spontaneously broken U(1) symmetries 
(global phases of 𝜒, 𝜓), which are singlets under the Standard Model 
group. One linear combination (𝜂’) is anomalous under the hyper 
color group (and hence expected to be heavy). The orthogonal 
combination (a) is an SM singlet which couples to the SM only 
through the Wess-Zumino-Witten anomaly. 
Hence, a pNGB with (calculable and fixed) WZW couplings is a 
genuine prediction of the UV completions under consideration. 
[arXiv:1512.07242]
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Example: SU(4)/Sp(4) coset based on GHC = Sp(2Nc) 
and colored pNGBs                                           [JHEP1511,201]

Motivation
Phenomenology of quark partners

Towards a CH UV embedding and its phenomenology
Conclusions and Outlook

One example: SU(4)/Sp(4) coset based on GHC = Sp(2Nc)

Field content of the microscopic fundamental theory and property transformation
under the gauged symmetry group Sp(2Nc) ⇥ SU(3)c ⇥ SU(2)L ⇥ U(1)Y , and
under the global symmetries SU(4) ⇥ SU(6) ⇥ U(1).

Sp(2Nc) SU(3)c SU(2)L U(1)Y SU(4) SU(6) U(1)
 1

 2
1 2 0

4 1 �3(Nc � 1)q� 3 1 1 1/2
 4 1 1 �1/2
�1

�2

�3

3 1 2/3

1 6 q��4

�5

�6

3 1 �2/3

14 / 46

Field content of the microscopic fundamental theory and its charges w.r.t. 
the gauge group Sp(2N)×SU(3)×SU(2)×U(1), and the global symmetries 
SU(4)×SU(6)×U(1):
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Bound states of the model:

Motivation
Phenomenology of quark partners

Towards a CH UV embedding and its phenomenology
Conclusions and Outlook

One example: SU(4)/Sp(4) coset based on GHC = Sp(2Nc)

Bound states of the model:
spin SU(4)⇥SU(6) Sp(4)⇥SO(6) names

  0 (6, 1) (1, 1) �
(5, 1) ⇡

�� 0 (1, 21) (1, 1) �c
(1, 20) ⇡c

�  1/2 (6, 6) (1, 6)  1
1

(5, 6)  5
1

�  1/2 (6, 6) (1, 6)  1
2

(5, 6)  5
2

 � 1/2 (1, 6) (1, 6)  3
 � 1/2 (15, 6) (5, 6)  5

4
(10, 6)  10

4

 �µ 1 (15, 1) (5, 1) a
(10, 1) ⇢

��µ� 1 (1, 35) (1, 20) ac
(1, 15) ⇢c

“Higgs”: ⇡ transforms as 4 � 1 under SO(4) ! identify ⇡ ⌘ (H, ⌘).
top partners: (3, 2, 2)2/3 states (for tL) in  5

1,2, 
5
4 , 

10 and
(3, 1, 1)2/3 or (3, 1, 3)2/3 (for tR) in  1

1,2, 
5
1,2, 3, 

5
4 , 

10
4 .

15 / 46

contains SU(2)L×SU(2)R 
bidoublet “H”

contain (3,2,2)2/3 
fermions: tL-partners

contain (3,1,X)2/3 
fermions: tR-partners

form a and 𝜂’ SM singlets

20 colored pNGB: 
(8,1,1)0⊕(6,1,1)4/3⊕(6,1,1)-4/3
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Full list of  "minimal" CHM UV embeddings
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The column “Restrictions” denotes 
the obvious requirements such as 
asymptotic freedom and 
compatibility with the reality 
properties of the irrep (e.g. the A2 of 
SU(NHC) is real only for NHC = 4).  

The “Non Conformal” column 
indicates the sub-range for which the 
model is likely outside of the 
conformal region: a “/” indicates that 
there are no solutions, i.e. all models 
are likely conformal.  

The −q𝝌/q𝜓 column indicates the ratio 
of charges of the fermions under the 
non-anomalous U(1) combination.



Chiral Lagrangian for the pNGBs
The pseudo-Goldstones are parameterized by the Goldstone boson 
matrices 

as a measure of the fine tuning needed in the alignment of the vacuum3. This notation has

the additional advantage that the Higgs couplings to the vector bosons are the same for all

cosets and are, in fact, the same as those of the minimal coset SO(5)/SO(4). However, this

forces us to normalize the chiral lagrangian di↵erently depending on the nature of the  

irrep. To allow us to write a common expression for all cases, we introduce the quantity

c5 =

8
<

:

p
2 for  real ,

1 elsewhere .
(3)

in terms of which

⌃
r

= ei2
p
2c5⇡a

rT
a
r /fr · ⌃0,r , �

r

= eic5ar/far , (4)

where T a

r

are the non-abelian generators in the fundamental rep normalized so that

Tr[T a

r

T b

r

] = �ab/2, f
r

and f
ar are the decay constants for the non abelian pions and the

singlets respectively. The matrix ⌃0,r is the EW-preserving vacuum.

Following this convention, the lowest order chiral Lagrangian can be written as:

L
�pt

=
X

r= ,�

f 2
r

8c25
Tr[(D

µ

⌃
r

)†(Dµ⌃
r

)] +
f 2
ar

2c25
(@

µ

�
r

)†(@µ�
r

) . (5)

Notice that we chose the same normalization (driven by the nature of the  irrep) for both

cosets, in order to simplify the notation for the abelian pNGBs later.

A few comments are in order at this stage: for the singlets, the lowest order operator

simply gives a kinetic term which does not depend on f
ar . However, the couplings of ar will

always be generated by the couplings of the U(1) currents to the underlying fermions, which

depends on an arbitrary parameter, i.e. the charge Q
r

of the fermions under the global

U(1). This consideration justifies why the decay constants f
r

and f
ar are, in principle, not

the same. In the following, we fix the decay constants by choosing Q
r

= 1 for r =  ,�.

A stronger relation between the decay constants of the singlets and the non-abelian pions

in each sector can only be drawn assuming that both are dominantly made of di-fermion

states. In QCD, this situation is achieved in the large-N
c

limit [28], following from Zweig’s

theorem, where the singlet associated to the anomalous U(1) is also expected to become

3 [A]: do we want to add a sentence like ”EWPT and Higgs couplings generically already gives a constraints

of about ✏ < 0.1 [...]”?
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where r = 𝜓,𝝌 ,  𝝅a are the non-abelian Goldstones, Ta are the corresponding broken 
generators, 𝚺0,r is the EW preserving vacuum, and 𝑎 are the U(1) Goldstones  
parameterized via the Goldstone boson matrices. (c5 is √2 for real reps and 1 otherwise). 
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where we chose the normalization such that                            where  𝜃 is the vacuum 
misalignment angle.

anomaly cannot be canceled by the composite states, the corresponding symmetry must be

spontaneously broken. Reversing the role of the fermions we reach the same conclusion for

the other coset. We point out that this argument is not rigorous. Its main weaknesses are the

possible existence of phase transitions [26], invalidating the massless limit, as well as the fact

that we are ignoring bound states composed by five or more fundamental fermions, which

can sometimes be formed using only one fermion species. We find it however su�ciently

convincing to assume that both condensates form, a necessary condition for the existence of

the pNGBs considered in this work.

III. PROPERTIES OF THE U(1) PNGBS (a AND ⌘0)

A. Chiral Lagrangian

In this section we will describe in detail how an e↵ective Lagrangian formalism can be

used to describe the properties of the singlets associated to the global U(1)’s. A chiral

perturbation theory for the class of models under interest has been recently presented in

Ref. [27], however only including the singlet associated with the non-anomalous U(1). Here,

we want to be more general and keep both states in the low energy Lagrangian, as the mass

generated for the anomalous current may be not very large.

As the model contains two fermion condensates, the chiral Lagrangian can be described

in terms of two copies of the pNGB matrix ⌃
r

and two singlets �
r

, where r =  ,�. The

⌃
r

’s contain the pNGBs from the non-abelian cosets, while �
r

’s contain the singlets. Fur-

thermore, we want to choose the normalization of the decay constants f
r

’s in such a way

that the mass of the W (and Z) bosons can be written as

m
W

=
g

2
f
 

sin ✓ , (1)

where ✓ is an angle describing the misalignment of the vacuum (thus, sin ✓ = 1 represents

the “Technicolor” limit of the theory, where f
 

= vSM = 246 GeV). In this way, we can

define the ratio

✏ =
v2SM
f 2
 

(2)
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In the large N limit, expect                          . 

light. All mesons can therefore be described by a single meson matrix �2
r

⌃
r

(the �2
r

comes

from the fact that the condensate has charge 2). The chiral Lagrangian, then, looks like

L
�pt

=
X

r= ,�

f 2
r

8c25
Tr[(D

µ

�2
r

⌃
r

)†(Dµ�2
r

⌃
r

)] , (6)

which is consistent with the above formulation if f
ar =

p
N

r

f
r

, N
r

being the di-

mension of the flavour matrix ⌃
r

(N
 

= 4 for SU(4)/Sp(4) and SU(4)⇥SU(4)/SU(4),

N
 

= 5 for SU(5)/SO(5), N
�

= 6 for SU(6)/Sp(6) and SU(6)/SO(6), and N
�

= 3 for

SU(3)⇥SU(3)/SU(3)). In the following, we will be interested in cases like the large-N
c

limit

of QCD where both singlets can be light, so that we introduce the parameters

⇠
r

= N
r

f 2
r

f 2
ar

, (7)

which should be equal to 1 in the large-N
c

limit. Note that corrections to this relation will

be generated by loop corrections in the chiral Lagrangian [29, 30].

Out of the 2 singlets we introduced, only one remains a pNGB because it is associated

to the anomaly-free combination of U(1). If q
 

and q
�

are the charges associated to the

anomaly-free current, the pNGB ã and the anomalous ⌘̃0 can be defined as

ã =
q
 

f
a 
a
 

+ q
�

f
a�a�q

q2
 

f 2
a 

+ q2
�

f 2
a�

, ⌘̃0 =
q
 

f
a 
a
�

� q
�

f
a�a q

q2
 

f 2
a 

+ q2
�

f 2
a�

. (8)

For later convenience, we can define a single dimensionless parameter describing the mixing,

i.e. an angle ⇣, and a single scale f
a

:

tan ⇣ =
q
�

f
a�

q
 

f
a 

, f
a

=
q
q2
 

f 2
a 

+ q2
�

f 2
a�

. (9)

As physics observables do not depend on the normalisation of the charges, we can always

chose q2
 

+ q2
�

= 1 without loss of generality. The values of q
�

/q
 

for the various models are

listed in Table I.

B. Couplings

The couplings of the singlets can only be generated by terms explicitly breaking the global

symmetries. The partial gauging of the non-abelian global symmetries cannot do the job, as

the gauged generators are not charged under the U(1)’s. If a mass term for the underlying

11
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1. The SM gauge group is weakly gauged, which explicitly breaks the 
global symmetry. This yields mass contributions for SM charged 
pNGBs. As the underlying fermions are SM charged, it also yields 
anomaly couplings of pNGBs to SM gauge bosons.  

2. The elementary quarks (in particular tops) need to obtain masses. This 
can be achieved through linear mixing with composite fermionic 
operators (“top partners”), which explicitly break the global symmetries.  

3. Mass terms for the underlying fermions explicitly break the global 
symmetries and give (correlated) mass contributions to all pseudo 
Goldstones.

Weak gauging and partial compositeness is commonly used in composite Higgs 
models to explain the generation of a potential for the Higgs (aka EW pNGBs). 
On the level of the underlying fermions, such mixing requires 4-fermion 
operators. 

What are the implications of the above points for the SM singlet, and the color-
octet pNGB? 
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Sources of masses and couplings of the pseudo Goldstone bosons:



Couplings of pNGBs to SM gauge bosons:

The underlying fermions are charged under the SM gauge fields, and thus ABJ 
anomalies induce couplings of the Goldstone bosons to the SM fields which are fully 
determined by the underlying quantum numbers. 

Singlets:

where 

The relation above shows that typically we would expect the octet to be heavier than the

light singlet pNGB, even if the color corrections were small.

The octet has also the possibility to couple to tops: like in the case of singlets, the

presence or not of this coupling depends on the representation of the composite top partners

under the global symmetries. As the octet pNGB is associated to the bound state h��i,

which is also charged under the U(1)
�

, it is straightforward to find a correlation between the

e↵ective charges of the top mass and the presence of a coupling with the octet. If the top

mass has a e↵ective charge ±2 under U(1)
�

, as indicated in the previous section, then the

e↵ective operator generating the mass of the top needs to be “dressed” by the appropriate

pNGB matrix �2
�

⌃
�

. On the other hand, if the charge is zero, then it is not needed to couple

⌃
�

to the top mass term, and a coupling to the octet is not necessarily present. One can

thus find a nice correlation between the charges determining the coupling of the singlets to

the tops, and the presence of an octet coupling. If present, the coupling will have the form:

m
t

t̄
L

⌃
�

t
R

+ h.c. ⇠ m
t

t̄t+ i
p
2c5

m
t

f
�

�a t̄�5�at+ . . . (33)

where �a are the Gell-Mann matrices, and we have omitted the other pNGB and singlets. For

the light quarks, if their masses are generated by 4-fermion interactions then no couplings

to the octet pNGB are generated.

It should also be remarked that, contrary to the case of the singlet, the presence of top

couplings will also generate corrections to the masses of the octet. Those contributions are

more model dependent, as they crucially depend on the representations of the top partners,

and we refer the reader to [41] for an example.

E. Wess-Zumino-Witten terms

The couplings of the singlets to the SM gauge bosons, generated by the WZW term, can

be computed in a similar way as in QCD [29]. Following the normalisation adopted in this

work, the couplings can be written as

LWZW � ↵
A

8⇡
c5
Cr

A

f
ar

�ab a
r

"µ⌫↵�Aa

µ⌫

Ab

↵�

, (34)

where

Cr

A

�ab = 2d
r

Tr[SaSb] , for complex reps ,

Cr

A

�ab = d
r

Tr[SaSb] , for real/pseudo-real reps , (35)

18

r coset  C 

W

C 

B

coset � C�

G

C�

B

complex SU(4)⇥SU(4)/SU(4) d
 

d
 

SU(3)⇥SU(3)/SU(3) d
�

6Y 2
�

d
�

real SU(5)/SO(5) d
 

d
 

SU(6)/SO(6) d
�

6Y 2
�

d
�

pseudo-real SU(4)/Sp(4) d
 

/2 d
 

/2 SU(6)/Sp(6) d
�

6Y 2
�

d
�

TABLE II: Coe�cients of the anomalous couplings.

where d
r

is the dimension of the rep r of hypercolor, and Sa,b in the trace correspond to

the gauged generators with gauge coupling ↵
A

= g2
A

/(4⇡). The normalization of the gauged

generators depends on the global group the gauge interactions are embedded in, so that

their trace is not the same as for the generators of the flavor group. Specifically, we note

that, in the cases of interest

Tr[SaSb] = �ab , for SU(5) ( ) and SU(6) (�) ;

Tr[SaSb] = 1
2
�ab , for all other cases .

For completeness and comparison, the WZW term for the non-abelian pions is

LWZW �
p
↵
A

↵
A

0

4
p
2⇡

c5
Cr

AA

0

f
r

cabc ⇡a

r

"µ⌫↵�Aa

µ⌫

A0b
↵�

, (36)

where

Cr

AA

0cabc = d
r

Tr[T a

⇡

{Sb, Sc}] (37)

for complex r, and there is an additional factor of 1/2 for real/pseudo-real representations.

1. Singlets

The coe�cients for the anomalous couplings of the two singlets are summarized in Ta-

ble II, where we recall that d
 

and d
�

are the dimensions of the representation of the fermions

under hypercolor. These numbers, calculated directly from the WZW term, have a simple

physical interpretation. In the EW sector described by  , up to a factor of 1/2, the C
W

(C
B

)

coe�cients count the number of Weyl spinors transforming as SU(2)
L

(SU(2)
R

) doublets:

d
 

in the SU(4)/Sp(4) coset and 2d
 

in the other two cases. Furthermore, as the theory is

19

Non-abelian pNGBs:
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�
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TABLE II: Coe�cients of the anomalous couplings.

where d
r

is the dimension of the rep r of hypercolor, and Sa,b in the trace correspond to

the gauged generators with gauge coupling ↵
A

= g2
A

/(4⇡). The normalization of the gauged

generators depends on the global group the gauge interactions are embedded in, so that

their trace is not the same as for the generators of the flavor group. Specifically, we note

that, in the cases of interest

Tr[SaSb] = �ab , for SU(5) ( ) and SU(6) (�) ;

Tr[SaSb] = 1
2
�ab , for all other cases .

For completeness and comparison, the WZW term for the non-abelian pions is

LWZW �
p
↵
A

↵
A

0

4
p
2⇡

c5
Cr

AA

0

f
r

cabc ⇡a

r

"µ⌫↵�Aa

µ⌫

A0b
↵�

, (36)

where

Cr

AA

0cabc = d
r

Tr[T a

⇡

{Sb, Sc}] (37)

for complex r, and there is an additional factor of 1/2 for real/pseudo-real representations.

1. Singlets

The coe�cients for the anomalous couplings of the two singlets are summarized in Ta-

ble II, where we recall that d
 

and d
�

are the dimensions of the representation of the fermions

under hypercolor. These numbers, calculated directly from the WZW term, have a simple

physical interpretation. In the EW sector described by  , up to a factor of 1/2, the C
W

(C
B

)

coe�cients count the number of Weyl spinors transforming as SU(2)
L

(SU(2)
R

) doublets:

d
 

in the SU(4)/Sp(4) coset and 2d
 

in the other two cases. Furthermore, as the theory is
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Underlying fermion mass terms:

The SM singlet pNGBs cannot obtain mass through the weak gauging. To make 
them massive,  we add mass terms for 𝝌 (and in principle 𝜓) which break the 
chiral symmetry. They yield mass terms 

fermions is added, however, it necessarily carries the U(1) charge of the specific fermion.

Following [27], we add the fermion masses in the Lagrangian as follows:

L
m

=
X

r= ,�

f 2
r

8c25
�2

r

Tr[X†
r

⌃
r

] + h.c. =
X

r= ,�

f 2
r

4c25


cos

✓
2c5

a
r

f
ar

◆
ReTr[X†

r

⌃
r

]

� sin

✓
2c5

a
r

f
ar

◆
ImTr[X†

r

⌃
r

]

�
. (10)

The spurions X
r

are related to the the fermion masses linearly

X
r

= 2B
r

m
r

r =  ,� , (11)

where B
r

is a dimensional constant (that can, in principle, be calculated on the Lattice).

Note that, without loss of generality, m
r

is a real matrix in the non-abelian flavour space of

the fermion specie r. From the above expressions, we can read o↵ the masses of the singlets

and non-abelian pions:

m2
ar

= 2
f 2
r

f 2
ar

B
r

Tr[⌃0,rmr

] ,
�
m2
⇡r

�
ab

= 4B
r

Tr[T aT b⌃0,rmr

] . (12)

In the limit where the condensates are aligned with the mass matrices m
r

= µ
r

⌃†
0,r, which

corresponds to the EW preserving vacuum and where µ
r

is a common mass for all underlying

fermions, the masses simplify to

m2
⇡r

= 2B
r

µ
r

, m2
ar

= 2N
r

f 2
r

f 2
ar

B
r

µ
r

= ⇠
r

m2
⇡r
, (13)

where N
r

is the dimension of the matrix ⌃
r

. We recover the result that in the large-N
c

limit,

the masses of all mesons are equal as ⇠
r

= 1.

We also note that Eq. (10) contains linear couplings of the singlets to the non-abelian

pions:

L
m

� � f 2
r

2c5far
a
r

ImTr[⌃
r

X†
r

] , (14)

which potentially include mixing terms between the singlet and the non-abelian pions. In the

limit where both vacuum and mass matrices are aligned with the EW preserving direction,

the expression simplifies to

L
m

� �B
r

µ
r

f 2
r

f
arc5

a
r

ImTr[ei2
p
2c5

⇡a
r

fr
T

a
r ] =

p
2c25m

2
⇡r

3f
r

f
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a
r

X

abc

dabc⇡a

r

⇡b

r

⇡c

r

+ . . . , (15)
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Couplings to tops and top mass:

We want to realize top masses through partial compositeness, i.e. 

where the dots include terms with more fields and dabc = 2Tr[T a{T b, T c}] is a fully-symmetric

tensor. The presence of mixing with or couplings to other non-abelian pions depends on

the coset. In the EW sector, 3 possible cosets are allowed. For the minimal SU(4)/Sp(4),

we found that no mixing and no coupling is possible as the trace Tr[⌃
 

X†
 

] is real. In

the SU(4)⇥SU(4)/SU(4) case, at leading order in v/f
 

no mixing is generated however a

coupling to the triplets and to the second doublet is generated, allowing 2-body decays

into these additional pions. This coupling can potentially a↵ect the phenomenology of the

singlet, if the additional pions are light enough. In the SU(5)/SO(5) case, we found that a

mass mixing with all neutral pseudo-scalar is generated by the Higgs VEV at leading order.

More details on such couplings can be found in the Appendix ??. Finally, in the color sector

generated by the �� condensate, we found that a coupling to the colored pions is present in

the SU(6)/Sp(6) and SU(6)/SO(6) cases.

1. Couplings to fermions

The couplings of the strong dynamics to SM fermions is another source of explicit breaking

of the global symmetries that may induce direct couplings of the singlets to fermions. The

class of models we want to investigate, implements partial compositeness to generate a mass

for the top, where the mass is proportional to two linear mixings of the elementary fermions

to composite states:

L
mix

◆ y
L

q̄
L

 
qL + y

R

 ̄
tRtR + h.c. (16)

where  
qL/tR

are fermionic composite operators that have the same quantum numbers as the

left-handed and right-handed tops respectively, and which contains the top partners at low

energy. As such operators are made of 3 fermions, they carry charge under the two U(1): the

couplings of the pions can then be recovered by assigning a charge to the pre-Yukawas y
L/R

that match the one of the composite operators. Without loss of generality, each spurion can

be associated with a combination of pion matrices

y
L

! �
nL 

 

�nL�
�

y
L

, (17)

and similarly for y
R

. As mtop ⇠ y
L

y
R

, the singlets decouple from the top quark as long as

the charges of the two pre-Yukawas are opposite [19, 31]. However, this situation can never
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where 𝛙 are the composite top partners, depending on the model either 𝜓𝜓𝝌 or 𝜓𝝌𝝌 
bound states. The spurions yL,R thus carry charges under the U(1)𝝌,𝜓 . 
The top mass in partial compositeness is proportional to yL* yR fand thus also has definite 
U(1)𝝌,𝜓 charges n𝜓,𝝌 . For 𝜓𝜓𝝌:  

be realised in the class of models under consideration. If both pre-Yukawas involve the same

operator in terms of fundamental states, then the charges are the same as the U(1)’s are

axial. The charge assignments depend on the structure of the fermionic bound states: if the

fermion contains   �, then the possible charges of the spurions and of the top mass are:

y
L

, y
R

⇠ (±2, 1) , (0,�1) , ) mtop ⇠ (±4, 2) , (0,±2) , (±2, 0) ,

although not all the possible cases are generated in all the models. For  ��, it su�ces to

exchange the two charges. We see that in no case the charge of the top mass can be zero

for both singlets. The couplings of the singlets to tops can therefore be written as

L
top

= mtop�
n 

 

�n�
�

t̄
L

t
R

+ h.c. = mtop t̄t+ ic5

✓
n
 

a
 

f
a 

+ n
�

a
�

f
a�

◆
mtop t̄�5t+ . . . (18)

Changing basis to ã and ⌘̃0, the couplings read

ic5
mtop

f
a

✓
(n

 

q
 

+ n
�

q
�

) ã+

✓
n
�

q
 

f
a 

f
a�

� n
 

q
�

f
a�

f
a 

◆
⌘̃0
◆
t̄�5t , (19)

where we recognise that the couplings of the pNGB ã is proportional to the charge under

the non-anomalous U(1).

In this class of composite Higgs models, the matter content of the confining sector cannot

accommodate enough partners to realize partial compositeness for all fermions: the Yukawa

couplings of the light fermions must therefore come from a di↵erent operator. A simple

possibility [32] is to introduce couplings of SM bilinears f̄f with the strong sector:

y
bil

⇤2
F

f̄f  ̄ , (20)

where y
bil

⇠ m
f

and the flavour scale ⇤
F

can be much higher than the condensation scale.

While these operators are generically irrelevant, they can be large enough to reproduce light

quark masses, and suppressed enough to evade flavour bounds [4, 33, 34]. Another possibility

would be that the masses of light fermions are generated at higher scale, possibly via partial

compositeness [35]. The U(1) symmetries can be formally restored promoting y
bil

to be a

spurion only charged under U(1)
 

, and this implies a low energy coupling proportional to

m
f

�2
 

f̄
L

f
R

+ h.c. = m
f

f̄f + i2c5
m

f

f
a 

a
 

f̄�5f + . . . (21)

This coupling has the same form as the one we derived for the top, but with fixed charges

n
 

= 2 and n
�

= 0.
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NOTE: 
• The term that generates the top mass also generates couplings of the pNGBs to tops. 
• The possible top couplings depend on the model and top partner embedding, with a 

discrete set of choices.  
• For the singlet pNGBs, the coupling never vanishes as in no case n𝜓 = 0 = n𝝌. 

• The analogous argument yields zero coupling of 𝝅8 to tops if  n𝝌 = 0. 14/29



Singlets: masses and mixing
The states a𝜓,𝝌 mix due to an anomaly w.r.t. the hyper color group which breaks U(1)𝜓 x 
U(1)𝝌 to U(1)a.       
The anomaly free and anomalous combinations are 

light. All mesons can therefore be described by a single meson matrix �2
r

⌃
r

(the �2
r

comes

from the fact that the condensate has charge 2). The chiral Lagrangian, then, looks like

L
�pt

=
X

r= ,�

f 2
r

8c25
Tr[(D

µ

�2
r

⌃
r

)†(Dµ�2
r

⌃
r

)] , (6)

which is consistent with the above formulation if f
ar =

p
N

r

f
r

, N
r

being the di-

mension of the flavour matrix ⌃
r

(N
 

= 4 for SU(4)/Sp(4) and SU(4)⇥SU(4)/SU(4),

N
 

= 5 for SU(5)/SO(5), N
�

= 6 for SU(6)/Sp(6) and SU(6)/SO(6), and N
�

= 3 for

SU(3)⇥SU(3)/SU(3)). In the following, we will be interested in cases like the large-N
c

limit

of QCD where both singlets can be light, so that we introduce the parameters

⇠
r

= N
r

f 2
r

f 2
ar

, (7)

which should be equal to 1 in the large-N
c

limit. Note that corrections to this relation will

be generated by loop corrections in the chiral Lagrangian [29, 30].

Out of the 2 singlets we introduced, only one remains a pNGB because it is associated

to the anomaly-free combination of U(1). If q
 

and q
�

are the charges associated to the

anomaly-free current, the pNGB ã and the anomalous ⌘̃0 can be defined as

ã =
q
 

f
a 
a
 

+ q
�

f
a�a�q

q2
 

f 2
a 

+ q2
�

f 2
a�

, ⌘̃0 =
q
 

f
a 
a
�

� q
�

f
a�a q

q2
 

f 2
a 

+ q2
�

f 2
a�

. (8)

For later convenience, we can define a single dimensionless parameter describing the mixing,

i.e. an angle ⇣, and a single scale f
a

:

tan ⇣ =
q
�

f
a�

q
 

f
a 

, f
a

=
q
q2
 

f 2
a 

+ q2
�

f 2
a�

. (9)

As physics observables do not depend on the normalisation of the charges, we can always

chose q2
 

+ q2
�

= 1 without loss of generality. The values of q
�

/q
 

for the various models are

listed in Table I.

B. Couplings

The couplings of the singlets can only be generated by terms explicitly breaking the global

symmetries. The partial gauging of the non-abelian global symmetries cannot do the job, as

the gauged generators are not charged under the U(1)’s. If a mass term for the underlying

11

The singlet mass terms (including contributions from underlying fermion masses) is thus  

C. Masses and Mixing of the Singlets

The masses for the singlets are generated by the masses of the underlying fermions, m
 

and m
�

, and the instanton related to the anomalous current. Even though a coupling to

tops and light fermions exist, those do not lead to corrections to the mass of the singlets.

One way to see this is that all loops of fermions will be proportional to the absolute value of

the spurions in order to write an operator which is gauge invariant. Thus, the dependence

on the singlet pions, which comes in via exponentials, vanishes. As discussed above, mixing

to singlets in the sets of non abelian pions, specifically from the EW coset, can also be

generated if the masses of the underlying fermions are not aligned with the EW preserving

vacuum and they will be suppressed by the Higgs VEV squared. In the following we will

simplify the discussion and neglect such terms, which are not a↵ecting other sectors of the

theory like the Higgs potential.

The mass matrix for the singlets, therefore, can be written from

Lmass =
1

2
m2

a�
a2
�

+
1

2
m2

a 
a2
 

+
1

2
M2

A

(cos ⇣a
�

� sin ⇣a
 

)2 (22)

whereM2
A

is the mass generated by instanton e↵ects, proportional to the topological suscepti-

bility of the hypercolour group, for the singlet ⌘̃0 associated with the anomalous combination

of U(1)’s. For now, we will consider it as a free parameter, even though the topological mass

is, in principle, calculable once the underlying dynamics is specified.

In the following, we want to entertain the case where the topological mass may be small,

as it happens in large-N
c

QCD. In fact, in many of the models we consider the number

of colours is large and/or the representation of the underlying fermions is large. Another

physical consideration allows us to simplify the mixing structure: the mass of the pNGBs

in the EW sector, due to the condensation of the  ’s, also contributes to the mass of the

SM-like Higgs boson. Thus, its value is constrained to be small in order to minimize the

fine tuning in the Higgs mass. While the details depend on the specific model, some general

considerations are in order. In fact, in some cases such mass term can be used to stabilize

the Higgs potential against he contribution of the top loops and obtain a small misalignment

in the vacuum [36, 37]. In such cases, one would expect m
⇡ 

⇠ f
 

. Alternatively, if the

top partners are light enough, their contribution to the Higgs potential is also enough to

stabilize it and give the correct value of the Higgs mass [38–40]. In this case, therefore, one
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where                             and  MA is a mass contribution generated by instanton effects. 
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symmetries. The partial gauging of the non-abelian global symmetries cannot do the job, as

the gauged generators are not charged under the U(1)’s. If a mass term for the underlying
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The masses of the pNGBs are  

would require that the contribution of the fermion mass were small, i.e. m
⇡ 

⌧ f
 

. This

situation contrasts with the coset generated by �: here, colored pNGBs are expected and

the strong constraints from searches at the LHC require their masses to be close to the TeV

scale [41]. It is thus natural to expect that m
⇡ 

⌧ m
⇡� . In the following, we will work

under this assumption.

We will first diagonalise the mass matrix keeping all the mass terms in Eq. (22). We

define the mass eigenstate as
0

@ a

⌘0

1

A =

0

@ cos↵ sin↵

� sin↵ cos↵

1

A

0

@ a
 

a
�

1

A (23)

with

m2
a/⌘

0 =
1

2

⇣
M2

A

+m2
a�

+m2
a 

⌥
q

M4
A

+�m4
a�
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where, for short notation, we define �m2
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> 0. The mixing angle can be

expressed in terms of the mass eigenvalues and the parameter ⇣ as
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where, again for short notation, we define the masses after subtraction of the contribution
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), then

↵ ⇠ ⇣ and the mass eigenstates coincide with the pNGB and the anomalous combination,

as expected.

The mass matrix depends on 4 independent parameters: 3 masses and the angle ⇣. It is

convenient to trade two of them for the mass eigenvalues which have a more direct physical

meaning. Thus, we can define a “physical basis” thanks to the following relations:
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However, there are constraints on the value of the physical masses. First of all, from the

positivity of the argument of the square root in the above formulas, we can derive a lower

bound on the mass di↵erence:
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and the interactions in the mass eigenbasis are obtained by rotating from the a𝜓,𝝌 basis into 
the a,η’ basis with 

would require that the contribution of the fermion mass were small, i.e. m
⇡ 

⌧ f
 

. This

situation contrasts with the coset generated by �: here, colored pNGBs are expected and
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Singlet pNGB summary and phenomenology 

16/29

• The mass ma must result from explicit breaking of the U(1) symmetries (e.g. 
through mass terms for the underlying 𝜒). mη also obtains mass from instantons. 

• f𝝈 results from chiral symmetry breaking.                          . 
• The WZW coefficients 𝜅i are fully determined by the quantum numbers of 𝜒, 𝜓. 
• The coefficient Ca coefficient is also fixed in each individual model.  

• 𝝈 is produced in gluon fusion. 
• 𝝈 decays to                                      and with fully determined branching ratios. 
• The resonance is narrow. 

PhenomenologyL =
1

2

�
@µa@

µa�m2
aa

2
�
++

g2i
32⇡2

a
i

fa
a✏µ⌫⇢�Ga

i,µ⌫G
a
i,⇢� + i Ca

mt

fa
a t�5t (1.3)

gg, WW, ZZ, Z�, ��, tt̄ (1.4)

2

ALL composite Higgs model embeddings studied contain two SM singlet 
pseudo scalars a and η’ which both are described by the effective Lagrangian

BR(�!g�)
BR(�!gg)

BR(�!gZ)
BR(�!gg)

Y� = ±1/3 8.7 · 10�3 2.6 · 10�3

Y� = ±2/3 0.035 0.011

TABLE III: Values of rations of BR in diboson for the pseudoscalar octet.

hypercharge assigned to the �’s, which has two possible assignments (see Table I). The

numerical values are thus reported in Table V, where the coupling constants are evaluated

at the Z pole. We see that while the decay to a Z boson is always suppressed by a tan2 ✓
W

factor, the decay into a photon can be sizeable, especially for Y
�

= 2/3, and will lead to

interesting phenomenology [42].

3. Top loops e↵ects

G: add discussion about the value and numerical impact of the top loop contribution to

decays to dibosons. Hugo is working on this.

IV. PHENOMENOLOGY

Thomas, Sasha, Giacomo

Editing in progress by:

A. Phenomenology of the singlet pseudo-scalar PNGBs

The e↵ective Lagrangian of a SM neutral pseudo-scalar � interacting with SM gauge

fields through anomaly terms is
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(43)
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Figure 2: Relative correction due to the top loops for positive (left) and negative (right)
value of Ct.

ã tan ⇣ g
W
g

B
g

Ct
g

model (2,0) (0,2) (4,2)/(2,4) (-4,2)/(2,-4)
1 -0.913 -3.11 -1.05 -0.38 -0.3 0.25 0.2 -0.8
2 -0.456 -3.84 -1.35 -0.68 -0.3 0.125 -0.05 -0.55
3 -0.913 -2.72 -1.37 1.29 -0.34 0.286 -0.4 0.97
4 -1.83 -4.56 -1.067 1.6 -0.133 0.22 -0.044 0.489
5 -1.83 -2.03 -0.75 -0.083 -0.3 0.5 0.7 -1.3
6 -1.29 -2.58 -0.9 -0.23 -0.3 0.5 0.7 -1.3
7 -0.323 -4.01 -1.5 -0.83 -0.3 0.125 -0.05 -0.55
8 -0.41 -0.77 -1.2 1.47 -1.2 0.4 -2 2.8
9 -3.27 -4.29 -0.54 2.12 -0.068 0.182 0.045 0.32
10 -3.27 -3.90 -0.6 2.07 -0.075 0.2 0.05 0.35
11 -0.816 -1.55 -1 1.67 -0.5 0.33 -0.67 1.33
12 -0.385 -2.07 -1.125 1.54 -0.45 0.2 -0.7 1.1

6

⌘̃

0 tan ⇣ g
W
g

B
g

Ct
g

model (2,0) (0,2) (4,2)/(2,4) (-4,2)/(2,-4)
1 -0.913 3.41 0.875 1.54 0.25 0.25 0.75 -0.25
2 -0.456 8.40 0.28 0.95 0.0625 0.125 0.31 -0.19
3 -0.913 2.98 1.14 3.81 0.28 0.286 0.86 -0.28
4 -1.83 2.50 3.55 6.22 0.444 0.22 1.11 -0.667
5 -1.83 1.11 2.5 3.167 1 0.5 2 0
6 -1.29 2.0 1.5 2.167 0.5 0.5 1.5 -0.5
7 -0.323 12.4 0.156 0.823 0.03 0.125 0.28 -0.22
8 -0.41 1.89 0.2 2.87 0.2 0.4 0.8 0
9 -3.27 1.31 5.82 8.48 0.73 0.182 1.63 -1.27
10 -3.27 1.19 6.4 9.07 0.8 0.2 1.8 -1.4
11 -0.816 1.90 0.67 3.33 0.33 0.33 1 -0.33
12 -0.385 5.39 0.167 2.83 0.067 0.2 0.33 0.067

In the two Tables, I collected the values of the couplings (normalised as in Eq. 43 of
the Draft, with f� = f = f� = f), in the decoupling limit, i.e. when the mass eigenstates
coincide with the anomalous and non-anomalous U(1)’s (i.e. ↵ = ⇣). These values can guide
the eye about the model that have small Ct couplings relative to the ’s.

In the plots /Plots/CouplingsA.pdf you can find plots of the various couplings as a
function of ↵. Same for ⌘0 can be found in /Plots/CouplingsEta.pdf. The colour-code is:

Left plots : RED for g, BLUE for W and GREEN for B;

Right plots : the plots show Ct for all possible choices of top partners, with RED for (2,0) or (0,2),
BLUE for (0,2) or (2,0), DARK GREEN for (4,2) or (2,4) and LIGHT GREEN for
(-4,2) or (2,-4). The two options refer to   � or  �� bound states.

Note that:

⇣

⇣

2
 ↵  ⇣

2
< 0 (27)

is the allowed region for the mixing angle ↵. The plots range on [⇣, 0], and the vertical line
marks ⇣/2, thus only the left half of the plot is physical (I kept the whole range to check
that for ↵ = 0 the correct decoupling happens).

Finally 1–12 label the 12 possible non-conformal models (refer to Table I of the Draft),
where:

1: SO(7) with 5 F and 6 Sp;

2: SO(9) with 5 F and 6 Sp;

3: SO(7) with 5 Sp and 6 F ;

4: SO(9) with 5 Sp and 6 F ;

7
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Production cross section for a pseudo-scalar 𝝈

FIG. 1: Production cross section of a pseudo scalar � with coupling g/f� = 1 TeV�1

from gluon fusion as a function of its mass M� at LHC with
p
s = 13 TeV [STILL

NEEDED].

A. Phenomenology of the singlet pseudo-scalar PNGBs

The e↵ective Lagrangian of a SM neutral pseudo-scalar � interacting with SM gauge

fields through anomaly terms is

L =
1

2

�
@µ�@

µ� �M2
��

2
�
+ i C�

mt

f�
� t�5t

+
g23

32⇡2

g

f�
�

✓
✏µ⌫⇢�Ga

µ⌫G
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g22
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i
⇢� +

g21
g23

B

g

✏µ⌫⇢�Bµ⌫B⇢�

◆
,

(34)

which is characterized by five parameters: the mass M�, the ratio g/f� (coe�cient of the

SU(3) term) which controls the production cross section, and the three ratios C�/g, B/g

and W/g which dictate the branching ratios.

The dominant production channel for � is gluon fusion.3 Fig. 1 shows the production

cross section of � from gluon fusion as a function of M� for LHC at 8 and 13 TeV.4 In Fig. 1

we fixed g/f� to 1 TeV�1 (XXX to be decided). The production cross section scales like

(g/f�)2.

� decays to di-bosons through the WZW interactions or into tt̄. The partial widths of

� are given by [5] Hugo: corrected decay to tt. For pseudo-scalar coupling goes with 1/2

3 The only other production channels are the vector boson fusion channels which however are negligible

unless the ratios W /g and/or W /g do not only overcome the coupling suppression g2i /g
2
3 but also the

suppression of vector boson PDFs as compared to the gluon PDF.
4 We use XXX for simulation.
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where ✓W is the Weinberg angle.

2

Partial widths:

Note: Branching fractions are independent of f𝝈.
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Branching fractions:
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(Current) experimental constraints: 
(Summarized ATLAS and CMS @ 8 TeV and 13 TeV) 



Resulting bounds on pNGB production cross section [pb]

Bounds on the pNGB production cross section in pb for different masses as function of the 
anomaly coefficients. Dominant channels: gg (red), WW (green), ɣɣ(blue), Zɣ (yellow). 22/29

FIG. 4: Combined bounds on the production cross section times branching ratio into

dibosons in the 
W

/
g

vs. 
B

/
g

plane for M
�

= 300, 500, 1000, 2000 GeV. The

contours give the bounds in pb. The colored areas indicate the decay channel which with

current data yields the strongest constraint: gg (orange), WW (green), Z� (yellow), or

�� (blue). The two grey diagonals indicate the lines on which the SM singlet pNGBs a

and ⌘0 of the models discussed in Sec. II lie.

resonance masses. The colored regions indicate the decay channel which (with current

data) yields the strongest bound at a given parameter point. At 
W

/
g

= 
B

/
g

= 0, the

branching ratios in all diboson channels apart from gg are zero, and the strongest bound

around the origin thus arises from the gg channel. For increasing |
B,W


g

|, the bound on

�13⇥BR(� ! bosons) initially becomes marginally weaker because the branching fraction

into gg marginally decreases. For further increased |
B,W

/
g

|, channels other than gg become

the most constraining channels, at which point the bound becomes stronger again. Fig. 4

quantifies the bounds for any model described by the e↵ective Langrangian Eq.(43). As

outlined in Sec.II, the models considered in this article predict Standard Model singlet
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Values of  C𝝈/𝜅g above which resonant top pair searches dominate:
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FIG. 6: Values of C
�

/
g

at which tt̄ searches start to yield strongest constraint on the �

production cross section. Figs. (a) - (d): In the 
W

/
g

vs. 
B

/
g

plane for various

masses M
�

, Figs. (e) and (f): In the 
B

/
g

vs. M
�

plane for W
g

= B
g

� � with � = 2/3

and � = 8/3.

30

FIG. 6: Values of C
�

/
g

at which tt̄ searches start to yield strongest constraint on the �

production cross section. Figs. (a) - (d): In the 
W

/
g

vs. 
B

/
g

plane for various

masses M
�

, Figs. (e) and (f): In the 
B

/
g

vs. M
�

plane for W
g

= B
g

� � with � = 2/3

and � = 8/3.

30

FIG. 6: Values of C
�

/
g

at which tt̄ searches start to yield strongest constraint on the �

production cross section. Figs. (a) - (d): In the 
W

/
g

vs. 
B

/
g

plane for various

masses M
�

, Figs. (e) and (f): In the 
B

/
g

vs. M
�

plane for W
g

= B
g

� � with � = 2/3

and � = 8/3.

30



Colored PNGBs 
 CH UV embeddings contain color sextet or color triplet pNGBs 

(model-dependent), but all models contain a color octet pNGB ɸ.

24/29

• ɸ is single-produced in gluon fusion or pair-produced through QCD. 

• ɸ decays to gg, gɣ, gZ, tt with fully determined branching fractions into dibosons: 

• For Y𝞆 =1/3: gg/gɣ/gZ = 1 / .05 / .015, Y𝞆 =2/3: gg/gɣ/gZ =  1 / .019 / .06.  
• The resonance is narrow. 

Phenomenology

Effective Lagrangian:
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From the above we can see that the two masses can be equal only in the limiting cases

⇣ = ±⇡/2 and ⇣ = 0, when the two U(1) pNGBs decouple: in the former, a
�

is identified

with the non-anomalous U(1), while in the latter it is a
 

. Note that the apparent divergence

for ⇣ = 0 is removed by the fact that m
a

= m
a 

in that limit. The value of the lighter mass

is also a monotonically increasing function of M
A

, thus it reaches the maximum value for
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It is also interesting to notice that the mixing angle ↵ is bounded between (assuming m
a 

<

m
a�):

0 <
tan↵
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< 1 . (30)

D. Non-abelian pions: the octet

Among the many non-abelian pions present in these models, there is a common player

that appears necessarily in all cosets: a color octet from the �� condensation. Independently

on the representation of � under the confining hypercolour, the octet � can be identified as a

bound state of h�1�2i, where �1,2 are the fermions transforming like a QCD color triplet and

anti-triplet respectively. Due to its ubiquitous presence, and the largish production cross

sections one may expect at the LHC, in the following we will consider its phenomenology

and possible connections with the properties of the singlets.

As a first connection, we note that its mass can be expressed in terms of the �-mass as
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where the second term comes from loop corrections from QCD, and C
g

> 0 is an unknown

order one number (the loop contribution is cut o↵ at a scale ⇤ ⇠ 4⇡f
�

). This provides a link

between the mass of the octet and the masses in the singlet sector: in fact, m
a� is related to

the singlet masses by Eq. (26). We also recall that ⇠
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⇠ 1, as expected in the large N
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-limit
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Right: Pair production cross 
section and bounds from pair 
produced di-jet searches [CMS, 
PLB747, 98] and 4t searches 
[ATLAS, JHEP08,105 and 
JHEP10, 150]. All data from 
LHC @ 8 TeV, still. 

Left: Implied bounds on the Cɸ/
𝜅g vs. Mɸ  parameter space. 
Red: 13 TeV bound from ICHEP 
on di-jet pairs [ATLAS-
CONF-2016-084]

FIG. 9: Bounds on C�/g

as a function of M� from 4t and 4j searches. Parameter

regions to the left and to the top of the blue line are excluded by bounds from LHC run

I. Parameter regions to the left from the red line are excluded by the ATLAS 4j search

at
p
s = 13 TeV.

• point out promising other channels: (gg)(g�), (gg)(tt)(?), (tt)(g�)(?)

[Tom: Overview table for studies; won’t go into the paper, but please leave it in for an

overview until later.] Possible decay signal channels (and searches which can be used for

them) are [REFS ARE NOT COMPLETE; THOSE ARE FROM A SEARCH THROUGH

THE EXOTICS AND B2G RESULTS. SUSY AND SM SEARCHES MIGHT BE RELE-

VANT. I only give 7 TeV results if they are not present for 8 TeV, yet]:

34
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FIG. 10: Bounds on � j resonances from 13 TeV searches and 8 TeV searches on the 13

TeV production crosssection times branching ratio. 8 TeV bounds have been rescaled by

the ratio of 13 TeV / 8 TeV production cross section for gluon fusion in order to allow

direct comparison.

For the analysis for single-produced color octet states we follow the same strategy as

for the single-produced singlet pseudo-scalar pNGBs in Sec. IVA. The analysis is simpler

because the color octet state is a singlet under SU(2)
L

, such that the branching fractions

BF�
g�/gg

and BF�
gZ/gg

in Eq. (59) are fixed up to a discrete choice Y
�

= ±1/3 or 2/3. For

these two choices, we can directly translate the bounds on the g� channel (Fig. 10) and

the gg and tt̄ channels (Fig. 3) into bounds � production cross section as a function of the

underlying model parameters C�/g

, M�. The results are shown in Fig. 11.

V. IMPLICATIONS FOR COMPOSITE MODELS: A CASE STUDY

The couplings in Eq. (34) are mapped to the model independent parametrization Eq. (43)

with


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for A = g,W,B if � = a. Similarly the coupling to tops is matched as
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. (61)
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Colored PNGBs 
Constraints from single production:

Channels with the strongest 
bound: gg (red), gɣ (cyan), tt 
(gray). 

-



Example: Bounds on f𝝌 in “Model 6” 
(                                                                                  )                                                                 

with n𝝌= 4, n𝜓=-2)

GHC  � Restrictions �q�/q Y� Non Conformal

Real Real SU(5)/SO(5) ⇥ SU(6)/SO(6)

SO(NHC) 5⇥ S2 6⇥ F NHC � 55 5(NHC+2)
6 1/3 /

SO(NHC) 5⇥Ad 6⇥ F NHC � 15 5(NHC�2)
6 1/3 /

SO(NHC) 5⇥ F 6⇥ Spin NHC = 7, 9 5
6 ,

5
12 1/3 NHC = 7, 9

SO(NHC) 5⇥ Spin 6⇥ F NHC = 7, 9 5
6 ,

5
3 2/3 NHC = 7, 9

Real Pseudo-Real SU(5)/SO(5) ⇥ SU(6)/Sp(6)

Sp(2NHC) 5⇥Ad 6⇥ F 2NHC � 12 5(NHC+1)
3 1/3 /

Sp(2NHC) 5⇥A2 6⇥ F 2NHC � 4 5(NHC�1)
3 1/3 2NHC = 4

SO(NHC) 5⇥ F 6⇥ Spin NHC = 11, 13 5
24 ,

5
48 1/3 /

Real Complex SU(5)/SO(5) ⇥ SU(3)2/SU(3)

SU(NHC) 5⇥A2 3⇥ (F,F) NHC = 4 5
3 1/3 NHC = 4

SO(NHC) 5⇥ F 3⇥ (Spin,Spin) NHC = 10, 14 5
12 ,

5
48 1/3 NHC = 10

Pseudo-Real Real SU(4)/Sp(4) ⇥ SU(6)/SO(6)

Sp(2NHC) 4⇥ F 6⇥A2 2NHC  36 1
3(NHC�1) 2/3 2NHC = 4

SO(NHC) 4⇥ Spin 6⇥ F NHC = 11, 13 8
3 ,

16
3 2/3 NHC = 11

Complex Real SU(4)2/SU(4) ⇥ SU(6)/SO(6)

SO(NHC) 4⇥ (Spin,Spin) 6⇥ F NHC = 10 8
3 2/3 NHC = 10

SU(NHC) 4⇥ (F,F) 6⇥A2 NHC = 4 2
3 2/3 NHC = 4

Complex Complex SU(4)2/SU(4) ⇥ SU(3)2/SU(3)

SU(NHC) 4⇥ (F,F) 3⇥ (A2,A2) NHC � 5 4
3(NHC�2) 2/3 NHC = 5

SU(NHC) 4⇥ (F,F) 3⇥ (S2,S2) NHC � 5 4
3(NHC+2) 2/3 /

SU(NHC) 4⇥ (A2,A2) 3⇥ (F,F) NHC = 5 4 1/12 /

TABLE I: All models of interest in this paper. The column “Restrictions” denotes the

obvious requirements such as asymptotic freedom and compatibility with the reality

properties of the irrep (e.g. the A2 of SU(NHC) is real only for NHC = 4). The “Non

Conformal” column indicates the sub-range for which the model is likely outside of the

conformal region: a “/” indicates that there are no solutions, i.e. all models are likely

conformal. The �q
�

/q
 

column indicates the ratio of charges of the fermions under the

non anomalous U(1) combination.
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Conclusions
• Composite Higgs Models provide a viable solution to the hierarchy 

problem but — being strongly coupled theories — they still provide many 
challenges and room for exploration. 

• EFT descriptions of composite Higgs models are only part of the story. 
UV embeddings need to be studied in more detail, and they will lead to 
novel (as well as already well-known) BSM LHC signatures. 

• We showed that di-boson signatures are predicted in a large class of CH 
UV embeddings. The models are highly predictive because the branching 
ratios of different di-boson channels are fully determined by the quantum 
numbers of the underlying fermion field content. 

• Another feature common to all models we considered are potentially light 
colored scalar resonances which can be tested at the LHC.
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