Review of New Phenomena Searches in the Top Quark Sector with the ATLAS detector

Romain Madar on behalf of the ATLAS Collaboration

Laboratoire de Physique Corpusculaire Clermont-Ferrand – France

Lyon Institute of Origin Conference – 5th of September 2016 –

Run: 2 Event: 2015-1

Why New Physics at the TeV scale?

from the point of view of a naive experimentalist ...

Before the Higgs Discovery

New physics **had** to appear at the TeV scale to restore predictive power of the theory, whatever its nature (Higgs field of course, but not only)

$$\begin{split} \Lambda_{\rm SM} &\sim 100\,{\rm TeV} & \underset{(10^{10})}{\overset{\text{Hierarchy}}{\longrightarrow}} {\rm between the bare mass} \\ & (10^{10}) \text{ and physical mass (10^4)} \\ & &$$

$$\begin{split} \Lambda_{\rm SM} &\sim 100\,{\rm TeV} & \underset{(10^{10})}{\overset{\text{Hierarchy}}{\longrightarrow}} {\rm between the bare mass} \\ &$$

Small change in model parameter → Dramatic change in physics prediction (EW scale !) This is what people call <u>un-naturalness</u> (rather a *guide* than a theorem-based argument)

Small change in model parameter → Dramatic change in physics prediction (EW scale !) This is what people call <u>un-naturalness</u> (rather a *guide* than a theorem-based argument)

$$\delta_{\mathrm{SM}} + \delta_{\mathrm{BSM}} \sim 10^4 \, \mathrm{GeV}^2$$

Romain Madar (LPC Clermont-Ferrand)

The Higgs boson is the **only** elementary scalar in the theory, suffering from this mass instability essentially coming from the **top quark's peculiar mass**. Three main ideas allow to workaround this unwanted feature.

The Higgs boson is the **only** elementary scalar in the theory, suffering from this mass instability essentially coming from the **top quark's peculiar mass**. Three main ideas allow to workaround this unwanted feature.

1. Additional symmetry 2. Compositeness 3. Extra-dimensions

The Higgs boson is the **only** elementary scalar in the theory, suffering from this mass instability essentially coming from the **top quark's peculiar mass**. Three main ideas allow to workaround this unwanted feature.

1. Additional symmetry

Compositeness

3. Extra-dimensions

The Higgs boson is the **only** elementary scalar in the theory, suffering from this mass instability essentially coming from the **top quark's peculiar mass**. Three main ideas allow to workaround this unwanted feature.

The Higgs boson is the **only** elementary scalar in the theory, suffering from this mass instability essentially coming from the **top quark's peculiar mass**. Three main ideas allow to workaround this unwanted feature.

The Higgs boson is the **only** elementary scalar in the theory, suffering from this mass instability essentially coming from the **top quark's peculiar mass**. Three main ideas allow to workaround this unwanted feature.

Little Higgs models predict heavy fermions that couple to the top (Vector-Like Quarks). SUSY searches will not be discussed in this review.

Romain Madar (LPC Clermont-Ferrand)

The Higgs boson is the only elementary scalar in the theory, suffering from this mass instability essentially coming from the top quark's peculiar mass. Three main ideas allow to workaround this unwanted feature.

1. Additional symmetry **2. Compositeness** 3. Extra-dimensions

The Higgs boson is the **only** elementary scalar in the theory, suffering from this mass instability essentially coming from the top quark's peculiar mass. Three main ideas allow to workaround this unwanted feature.

1. Additional symmetry **2. Compositeness**

The Higgs boson is the **only** elementary scalar in the theory, suffering from this mass instability essentially coming from the top quark's peculiar mass. Three main ideas allow to workaround this unwanted feature.

1. Additional symmetry **2. Compositeness**

Strong dynamics models predict heavy fermions that couple to the top (Vector-Like Ouarks).

The Higgs boson is the **only** elementary scalar in the theory, suffering from this mass instability essentially coming from the **top quark's peculiar mass**. Three main ideas allow to workaround this unwanted feature.

1. Additional symmetry 2. Compositeness 3. Extra-dimensions

The Higgs boson is the **only** elementary scalar in the theory, suffering from this mass instability essentially coming from the **top quark's peculiar mass**. Three main ideas allow to workaround this unwanted feature.

1. Additional symmetry 2. Compositeness 3.]

3. Extra-dimensions

The Higgs boson is the **only** elementary scalar in the theory, suffering from this mass instability essentially coming from the **top quark's peculiar mass**. Three main ideas allow to workaround this unwanted feature.

1. Additional symmetry 2. Compositeness 3. Extra-dimensions

Models based on extra-dimensions also predict extra heavy fermions coupled to the top (Vector-Like Quarks), as well as Kaluza-Klein excitations (when compactified).

- **1** Top Quark Reconstruction
- 2 Overview of ATLAS Searches

3 ATLAS Searches

- Resonant Searches
- Non-resonant Searches
- Searches for Vector-Like Quarks

Top Quark Reconstruction

The Top Quark as Seen by the Detector

The Top Quark as Seen by the Detector

Top Quark Reconstruction

The Top Quark as Seen by the Detector

b-jet Identification

- Impact parameter based algorithm
- Inclusive secondary vertex reconstruction algorithm
- Decay chain multi-vertex reconstruction algorithm

b-jet Identification

- Impact parameter based algorithm
- · Inclusive secondary vertex reconstruction algorithm
- Decay chain multi-vertex reconstruction algorithm

b-jet Identification

- Impact parameter based algorithm
- Inclusive secondary vertex reconstruction algorithm <---
- Decay chain multi-vertex reconstruction algorithm

Exploit full properties of the secondary vertex (mass, energy fraction, number of tracks, etc ...)

b-jet Identification

- Impact parameter based algorithm
- Inclusive secondary vertex reconstruction algorithm
- Decay chain multi-vertex reconstruction algorithm -

b-jet Identification

- Impact parameter based algorithm
- Inclusive secondary vertex reconstruction algorithm
- Decay chain multi-vertex reconstruction algorithm -

b-jet Identification

- Impact parameter based algorithm
- Inclusive secondary vertex reconstruction algorithm
- Decay chain multi-vertex reconstruction algorithm

Combination of 24 input variables

Top Quark Reconstruction

b-jet Identification

Top-jet Identification

Top-jet Identification

Top Quark Reconstruction

Top-jet Identification

Top Quark Reconstruction

Top-jet Identification

Top Quark Reconstruction

Top-jet Identification

Top Quark Reconstruction

Top-jet Identification

Jet substructure and top quark tagging is an entire field with many on-going developments. Just presenting few key ideas here, like N-subjettiness.

Top Quark Reconstruction

Top-jet Identification

Jet substructure and top quark tagging is an entire field with many on-going developments. Just presenting few key ideas here, like N-subjettiness.

Top Quark Reconstruction

Top-jet Identification

Jet substructure and top quark tagging is an entire field with many on-going developments. Just presenting few key ideas here, like N-subjettiness.

Wide spectrum of performances (see slide 44)

1 Top Quark Reconstruction

2 Overview of ATLAS Searches

3 ATLAS Searches

- Resonant Searches
- Non-resonant Searches
- Searches for Vector-Like Quarks

ł

Final state	Targeted process	Class of models
jets (all hadronic) Large BR's but large background	$X \to t \overline{t}$	Extra-dimensions
$\ell + \operatorname{jets}_{\text{Good compromise}\atop \text{BR/ background}}^{\text{(single lepton)}}$	$X o tar{b}$ $X o tarphi_{ ext{inv}}$	Additional symmetry
$\ell^{\pm}\ell^{\mp}$ (dilepton - OS) Clean signature but low BR's, perfect for Z's	$t\bar{t}t\bar{t}$	Vector-like Quarks
$\ell^\pm\ell^\pm/3\ell$ (dilepton - SS)	tt	Compositeness
Very low background (and mostly instrumental), needs several tops	Q o V q $Q \bar{Q} o V q V' q' V$	Alternative EWSB
	$t \to Hq t \to Zq gq \to t$	FCNC

Final state	Targeted process	Class of models
jets (all hadronic) – Large BR's but large background	$X \to t\bar{t}$	Extra-dimensions
$\ell + \operatorname{jets}_{\operatorname{Good compromise}}_{\operatorname{BR}/\operatorname{background}}$	$X \to tb$ $X \to t\varphi_{inv}$	Additional symmetry
$\ell^{\pm}\ell^{\mp}$ (dilepton - OS) Clean signature but low BR's, perfect for Z's	tītī	Vector-like Quarks
$\ell^\pm\ell^\pm/3\ell$ (dilepton - SS)	tt	Compositeness
Very low background (and mostly instrumental), needs several tops	$Q \to V q$ $Q\bar{Q} \to V q V' q' V$	Alternative EWSB
i	$t \to Hq t \to Zq gq \to q$	t FCNC

Overview of Searches

New results are in blue - since Moriond 2016.

Final state	8 TeV	13 TeV	Signal type
ℓ+jets boosted	JHEP 08 (2015) 148	ATLAS-CONF-2016-014	$X \rightarrow t\bar{t}$
ℓ +jets resolved	JHEP 08 (2015) 148	-	$X \to t \overline{t}$
ℓ +jets resolved	ATLAS-CONF-2016-073	-	$H/A \rightarrow t\bar{t}$, interferences
ℓ+jets	PLB 743 (2015) 235-255	-	$X ightarrow t ar{b}$
full had	EPJC (2015) 75:165	-	$X \to t \bar{b}$
full had $\oplus \ell + jets$	JHEP 03 (2016) 127	-	$H^+ ightarrow t ar{b}$
ℓ+jets	EPJC (2015) 75:79	-	$X \to t \varphi_{inv}$
ℓ+jets	JHEP 08 (2015) 105	-	$t\bar{t}t\bar{t}, Q\bar{Q} \rightarrow V q V' q'$
ℓ +jets boosted	-	ATLAS-CONF-2016-013	$t\bar{t}t\bar{t}, Q\bar{Q} \rightarrow Vq V'q'$
ℓ +jets resolved	-	ATLAS-CONF-2016-020	tītī
ℓ+jets	JHEP 08 (2015) 105	-	$Q\bar{Q} \rightarrow Wb + X$
ℓ+jets	arXiv:1602.05606	ATLAS-CONF-2016-072	$Q \rightarrow W b$
$\ell^+\ell^-$	JHEP 11 (2014) 104	-	$Q\bar{Q} \rightarrow Z q V' q'$
$\ell^{\pm}\ell^{\pm}$	JHEP 10 (2015) 150	ATLAS-CONF-2016-032	$tt, t\bar{t}t\bar{t}, Q\bar{Q}, X_{5/3}\bar{X}_{5/3}, X_{5/3}$
ℓ+jets	JHEP 12 (2015) 061	-	$t \rightarrow Hq$
3ℓ	EPJC 76 (2016) 12	-	$t \rightarrow Zq$
ℓ+jets	EPJC 76 (2016) 55	-	$gq \rightarrow t$

Romain Madar (LPC Clermont-Ferrand)

ATLAS Searches

Resonant Searches

1 Top Quark Reconstruction

2 Overview of ATLAS Searches

3 ATLAS Searches

- Resonant Searches
- Non-resonant Searches
- Searches for Vector-Like Quarks

ATLAS Searches

Resonant Searches

ATLAS Searches

Resonant Searches

$X \rightarrow t\bar{t} @ 8 \text{ TeV}$

Resolved topology → kinematic fit to infer compatibility of the jet system with a top quark $\left[\frac{m_{jj}-m_W}{\sigma_W}\right]^2 + \left[\frac{m_{jjb}-m_{jj}-m_{t_h-W}}{\sigma_{t_h-W}}\right]^2 + \left[\frac{m_{j\ell \nu}-m_{t_\ell}}{\sigma_{t_\ell}}\right]^2$ = + $\left[\frac{(p_{\mathrm{T},jjb} - p_{\mathrm{T},j\ell\nu}) - (p_{\mathrm{T},t_{\mathrm{h}}} - p_{\mathrm{T},t_{\ell}})}{\sigma_{\mathrm{diff}p_{\mathrm{T}}}}\right]^2$. Events/0.08 TeV 107 ATLAS - Data ⊂ SM tī 10⁶ vs=8 TeV, 20.3 fb⁻¹ SM W+jets 10⁵ Other SM 104 — g_{kk} 0.8 TeV, 15.3% 103 e+iets resolved 10² Both th and te b-tagged 10 10⁻¹ Data/BG 2 0 ō 2.5 3.5 0.5 1.5 2 3 m^{reco} [TeV]

ATLAS Searches

Resonant Searches

$X \rightarrow t\bar{t} @ 8 \text{ TeV}$

ATLAS Searches

Resonant Searches

$X \rightarrow t\bar{t} @ 8 \text{ TeV}$

Typical excluded mass scale $\sim 2 \text{ TeV}$

ATLAS Searches

Resonant Searches

$X \rightarrow t\bar{t} @ 13 \text{ TeV}$

16 / 46

ATLAS Searches

Resonant Searches

$H\!/\!A \to t\bar{t}$ - interfering with $gg \to t\bar{t}$

Until now, interferences with SM non-resonant process were neglected, but it can dramatically change the expected signature for signal at medium mass.

<u>First</u> investigation of this effect in 2HDM model - aligned type-II (arXiv:1505.00291) with 8 TeV data, resolved topology only.

ATLAS Searches

Resonant Searches

$H\!/\!A \to t\bar{t}$ - interfering with $gg \to t\bar{t}$

Until now, interferences with SM non-resonant process were neglected, but it can dramatically change the expected signature for signal at medium mass.

<u>First</u> investigation of this effect in 2HDM model - aligned type-II (arXiv:1505.00291) with 8 TeV data, resolved topology only.

ATLAS Searches

Resonant Searches

$H/A \rightarrow t\bar{t}$ - interfering with $gg \rightarrow t\bar{t}$

Until now, interferences with SM non-resonant process were neglected, but it can dramatically change the expected signature for signal at medium mass.

<u>First</u> investigation of this effect in 2HDM model - aligned type-II (arXiv:1505.00291) with 8 TeV data, resolved topology only.

ATLAS Searches

Resonant Searches

$H/A \rightarrow t\bar{t}$ - interfering with $gg \rightarrow t\bar{t}$

How to properly set a limit? Few (related) issues:

- meaning of signal strength $\mu \equiv \sigma_{sig} / \sigma_{sig}^{ref}$ since $\sigma_{sig}^{(ref)}$ is not defined?
- **2** interference pattern changes with μ
- a simple μ scale doesn't work for $I \propto \sqrt{\mu}$ (unlike $S \propto \mu$)

ATLAS Searches

Resonant Searches

$H/A ightarrow tar{t}$ - interfering with $gg ightarrow tar{t}$

How to properly set a limit? Few (related) issues:

• meaning of signal strength $\mu \equiv \sigma_{sig} / \sigma_{sig}^{ref}$ - since $\sigma_{sig}^{(ref)}$ is not defined?

2 interference pattern changes with μ

• a simple μ scale doesn't work for $I \propto \sqrt{\mu}$ (unlike $S \propto \mu$)

Re-parametrization of $N(\mu) = \mu S + B$: $\sqrt{\mu}$ is the new parameter of interest

$$N = \mu S + \sqrt{\mu}I + B = \sqrt{\mu}(S+I) + (\sqrt{\mu}^2 - \sqrt{\mu})S + B$$

ATLAS Searches

Resonant Searches

$H/A \rightarrow t\bar{t}$ - interfering with $gg \rightarrow t\bar{t}$

How to properly set a limit? Few (related) issues:

• meaning of signal strength $\mu \equiv \sigma_{sig} / \sigma_{sig}^{ref}$ - since $\sigma_{sig}^{(ref)}$ is not defined?

2 interference pattern changes with μ

3 a simple μ scale doesn't work for $I \propto \sqrt{\mu}$ (unlike $S \propto \mu$)

Re-parametrization of $N(\mu) = \mu S + B$: $\sqrt{\mu}$ is the new parameter of interest

18 / 46

$$N = \mu S + \sqrt{\mu}I + B = \sqrt{\mu}(S+I) + (\sqrt{\mu}^2 - \sqrt{\mu})S + B$$

Romain Madar (LPC Clermont-Ferrand)

ATLAS Searches

Non-resonant Searches

Overview

1 Top Quark Reconstruction

2 Overview of ATLAS Searches

3 ATLAS Searches

- Resonant Searches
- Non-resonant Searches
- Searches for Vector-Like Quarks

ATLAS Searches

Non-resonant Searches

tītī Strategy & Challenges

Standard Model

Effective theory

2UED signature

BSM Higgs

Scalar gluon

4 top quarks final state → 4 W bosons

→ 4 b-jets

ATLAS Searches

Non-resonant Searches

tttt Strategy & Challenges

Standard Model

Effective theory

2UED signature

Scalar gluon

ATLAS Searches

Non-resonant Searches

tttt Strategy & Challenges

Scalar gluon

WWWW decays branching fractions hhll (4.19%) hhhl (40.04%) same-sign e/µ hhll (24.59%) others hhhh (20.88%) hlll (9.20%) IIII (1.10%)

Same-sign dilepton

Low statistics, but low background

Challenging: instrumental backgrounds

Main background: tt + V

Key signature: large detector activity (H₋)

ATLAS Searches

Non-resonant Searches

ATLAS Searches

Non-resonant Searches

 $t\bar{t}t\bar{t}$ @ 13 TeV – ℓ +jets

4 top quarks in I+jets resolved final state

- \rightarrow 6 light jets (3 W_{had})
- → 4 b-jets
- \rightarrow 1 lepton (1 W_{lep})
- \rightarrow mET (neutrino from W_{lep})

4 top quarks in I+jets boosted final state

- \rightarrow 1, 2 or 3 top-tagged jets
- → 4, 2 or 0 light jets
- \rightarrow 3, 2 or 1 b-jets
- \rightarrow 1 lepton (1 W_{lep})
- \rightarrow mET (neutrino from W_{lep})

ATLAS Searches

Non-resonant Searches

$t\bar{t}t\bar{t}$ @ 13 TeV – ℓ +jets

I+jets boosted

ATLAS Searches

Non-resonant Searches

$t\bar{t}t\bar{t}$ @ 13 TeV – ℓ +jets

Romain Madar (LPC Clermont-Ferrand)

ATLAS Searches

Non-resonant Searches

$t\bar{t}t\bar{t}$ @ 13 TeV – ℓ +jets

 $\sigma \times BR [pb]$ Theory 95% CL observed limit 95% CL expected limit 95% CL expected limit ±1σ $\sigma_{SM}(t\bar{t}t\bar{t}) < 190 (143) \text{ fb} (21 \text{xSM})$ 95% CL expected limit ±2σ ATLAS Preliminary $\sigma_{ret}(t\bar{t}t\bar{t}) < 148 (115) \text{ fb}$ (s = 13 TeV, 3.2 fb⁻¹ 10 $|C_{4t}|/\Lambda^2 < 5.0 \text{ TeV}^{-2}$ 10^{-2} Tier (1,1), $\xi=1$, BR($A^{(1,1)} \rightarrow t\bar{t}$)=1 1000 1100 1200 1300 1400 1500 1600 1700 1800 m_{ĸĸ} [GeV] 5 × BR [pb] Theory 95% CL observed limit ······ 95% CL expected limit 95% CL expected limit ±1σ 95% CL expected limit ±2σ $\sigma_{sm}(t\bar{t}t\bar{t}) < 370 (180) \text{ fb } (40 \times \text{SM})$ ATLAS Preliminary $\sigma_{\rm FFT}(t\bar{t}t\bar{t}) < 140 (99) \, {\rm fb}$ 10 vs = 13 TeV, 3.2 fb⁻¹ $|C_{4t}|/\Lambda^2 < 4.8 \text{ TeV}^{-2}$ 10^{-2} Tier (1,1), ξ=1, BR(A^(1,1)→tt)=1 1000 1100 1200 1300 1400 1500 1600 1700 1800

+jets boosted

m_{er} [GeV]

Romain Madar (LPC Clermont-Ferrand)
ATLAS Searches

Non-resonant Searches

tītī @ 13 TeV – same-sign leptons

ATLAS Searches

Non-resonant Searches

tītī @ 13 TeV – same-sign leptons

ATLAS Searches

Non-resonant Searches

tttt @ 13 TeV - same-sign leptons

ATLAS Searches

Non-resonant Searches

tīttī @ 13 TeV – same-sign leptons

ATLAS Searches

Non-resonant Searches

tt @ 8 TeV – same-sign leptons

ATLAS Searches

Non-resonant Searches

Rare Top Quark Decay @ 8 TeV

 $gq \rightarrow t$

Single top final state, Neural network to extract the signal

ATLAS Searches

Non-resonant Searches

Rare Top Quark Decay @ 8 TeV

ATLAS Searches

Non-resonant Searches

Rare Top Quark Decay @ 8 TeV

ATLAS Searches

Searches for Vector-Like Quarks

Overview

1 Top Quark Reconstruction

Overview of ATLAS Searches

3 ATLAS Searches

- Resonant Searches
- Non-resonant Searches
- Searches for Vector-Like Quarks

ATLAS Searches

Searches for Vector-Like Quarks

Vector-Like Quarks Overview

1. What? Spin-1/2 fermions having ψ_L and ψ_R in the same SU(2) representation.

$$\mathcal{L}_{\mathrm{mass}} = M_Q \; (ar{\psi}_L \psi_R + ar{\psi}_R \psi_L)$$

Gauge-invariant mass term (*impossible* to have for SM fields)

ATLAS Searches

Searches for Vector-Like Quarks

- **1. What?** Spin-1/2 fermions having ψ_L and ψ_R in the same SU(2) representation.
- 2. Why? Fermions predicted in many theories addressing naturalness

ATLAS Searches

Searches for Vector-Like Quarks

- **1. What?** Spin-1/2 fermions having ψ_L and ψ_R in the same SU(2) representation.
- 2. Why? Fermions predicted in many theories addressing naturalness
 - Based on general assumptions, mostly 7 possible SU(2) representations heavily constraining the dynamics

ATLAS Searches

Searches for Vector-Like Quarks

- **1. What?** Spin-1/2 fermions having ψ_L and ψ_R in the same SU(2) representation.
- 2. Why? Fermions predicted in many theories addressing naturalness
 - Based on general assumptions, mostly 7 possible SU(2) representations heavily constraining the dynamics
 - Modify observable physics via a mixing with SM quarks (3rd generation)

$$\begin{pmatrix} t_{L,R} \\ T_{L,R} \end{pmatrix} = \begin{pmatrix} \cos \theta_{L,R}^u & -\sin \theta_{L,R}^u e^{i\phi_u} \\ \sin \theta_{L,R}^u e^{-i\phi_u} & \cos \theta_{L,R}^u \end{pmatrix} \begin{pmatrix} t_{L,R}^0 \\ T_{L,R}^0 \end{pmatrix}$$
Propagating states Mixing matrix SU(2) states

ATLAS Searches

Searches for Vector-Like Quarks

- **1. What?** Spin-1/2 fermions having ψ_L and ψ_R in the same SU(2) representation.
- 2. Why? Fermions predicted in many theories addressing naturalness
 - Based on general assumptions, mostly 7 possible SU(2) representations heavily constraining the dynamics
 - Modify observable physics via a mixing with SM quarks (3rd generation)
 - Compatible with existing observations
 - 1st generation: mixing constrained by parity violation in atomic physics (neutral current $u, d \leftrightarrow e^-$)
 - 2nd generation: mixing constrained by R_c (LEP)
 - 3rd generation: mixing allowed but constrained by R_b (LEP) and (S, T) "oblique" parameters
 - \rightarrow Much less constrained, and most relevant for hierarchy problem.

ATLAS Searches

Searches for Vector-Like Quarks

- **1. What?** Spin-1/2 fermions having ψ_L and ψ_R in the same SU(2) representation.
- 2. Why? Fermions predicted in many theories addressing naturalness
 - Based on general assumptions, mostly 7 possible SU(2) representations heavily constraining the dynamics
 - Modify observable physics via a mixing with SM quarks (3rd generation)
 - Compatible with existing observations
 - Heavy fermions compatible with $\sigma(gg \rightarrow H)$ production

ATLAS Searches

Searches for Vector-Like Quarks

- **1. What?** Spin-1/2 fermions having ψ_L and ψ_R in the same SU(2) representation.
- 2. Why? Fermions predicted in many theories addressing naturalness
 - Based on general assumptions, mostly 7 possible SU(2) representations heavily constraining the dynamics
 - Modify observable physics via a mixing with SM quarks (3rd generation)
 - Compatible with existing observations
 - Heavy fermions compatible with $\sigma(gg \rightarrow H)$ production

ATLAS Searches

Searches for Vector-Like Quarks

- **1. What?** Spin-1/2 fermions having ψ_L and ψ_R in the same SU(2) representation.
- 2. Why? Fermions predicted in many theories addressing naturalness
 - Based on general assumptions, mostly 7 possible SU(2) representations heavily constraining the dynamics
 - Modify observable physics via a mixing with SM quarks (3rd generation)
 - Compatible with existing observations
 - Heavy fermions compatible with $\sigma(gg \rightarrow H)$ production
- 3. How? Rich and reachable signatures at the LHC

ATLAS Searches

Searches for Vector-Like Quarks

Vector-Like Quarks Overview

- **1. What?** Spin-1/2 fermions having ψ_L and ψ_R in the same SU(2) representation.
- 2. Why? Fermions predicted in many theories addressing naturalness
 - Based on general assumptions, mostly 7 possible SU(2) representations heavily constraining the dynamics
 - Modify observable physics via a mixing with SM quarks (3rd generation)
 - Compatible with existing observations
 - Heavy fermions compatible with $\sigma(gg \rightarrow H)$ production
- 3. How? Rich and reachable signatures at the LHC

Single production / decay (model dependent – driven by EW)

ATLAS Searches

Searches for Vector-Like Quarks

Vector-Like Quarks Overview

- **1. What?** Spin-1/2 fermions having ψ_L and ψ_R in the same SU(2) representation.
- 2. Why? Fermions predicted in many theories addressing naturalness
 - Based on general assumptions, mostly 7 possible SU(2) representations heavily constraining the dynamics
 - Modify observable physics via a mixing with SM quarks (3rd generation)
 - Compatible with existing observations
 - Heavy fermions compatible with $\sigma(gg \rightarrow H)$ production

3. How? Rich and reachable signatures at the LHC

ATLAS Searches

Searches for Vector-Like Quarks

Vector-Like Quarks Overview

- **1. What?** Spin-1/2 fermions having ψ_L and ψ_R in the same SU(2) representation.
- 2. Why? Fermions predicted in many theories addressing naturalness
 - Based on general assumptions, mostly 7 possible SU(2) representations heavily constraining the dynamics
 - Modify observable physics via a mixing with SM quarks (3rd generation)
 - Compatible with existing observations
 - Heavy fermions compatible with $\sigma(gg \rightarrow H)$ production

3. How? Rich and reachable signatures at the LHC

ATLAS Searches

Searches for Vector-Like Quarks

Many ATLAS VLQ searches

Final state	8 TeV	13 TeV	VLQ Signal type
ℓ+jets	JHEP 08 (2015) 105	-	$T\bar{T} \rightarrow Wb + X/Ht + X, B\bar{B} \rightarrow Hb + X$
ℓ +jets	JHEP 08 (2015) 105	TOP2016	$T\bar{T} \rightarrow W b + X$
$\ell+jets$ boosted	-	ATLAS-CONF-2016-013	$T\bar{T} \rightarrow Ht + X$
ℓ +jets	arXiv:1602.05606	ATLAS-CONF-2016-072	$Y_{-4/3} \rightarrow W^- b, T \rightarrow W^- \bar{b}$
$\ell^+\ell^-$	JHEP 11 (2014) 104	TOP2016	$T\bar{T}(B\bar{B}) \rightarrow Z t(b) + X$
$\ell^{\pm}\ell^{\pm}$	JHEP 10 (2015) 150	ATLAS-CONF-2016-032	$T\bar{T}, B\bar{B}, X_{5/3}\bar{X}_{5/3}, X_{5/3}$

ATLAS Searches

Searches for Vector-Like Quarks

Many ATLAS VLQ searches

Final state	8 TeV	13 TeV	VLQ Signal type
ℓ+jets	JHEP 08 (2015) 105	-	$T\bar{T} \rightarrow Wb + X/Ht + X, B\bar{B} \rightarrow Hb + X$
ℓ +jets	JHEP 08 (2015) 105	TOP2016	$T\bar{T} \rightarrow W b + X$
ℓ +jets boosted	-	ATLAS-CONF-2016-013	$T\bar{T} \rightarrow Ht + X$
ℓ +jets	arXiv:1602.05606	ATLAS-CONF-2016-072	$Y_{-4/3} \rightarrow W^- b, T \rightarrow W^- \bar{b}$
$\ell^+\ell^-$	JHEP 11 (2014) 104	TOP2016	$T\bar{T}(B\bar{B}) \to Zt(b) + X$
$\ell^{\pm}\ell^{\pm}$	JHEP 10 (2015) 150	ATLAS-CONF-2016-032	$T\bar{T}, B\bar{B}, X_{5/3}\bar{X}_{5/3}, X_{5/3}$

In the next slides:

- Summary of 8 TeV results
- Results split for pair and single production
- Update with 13 TeV collisions

ATLAS Searches

Searches for Vector-Like Quarks

Summary of 8 TeV Results

How to cover the largest parameter space?

 \rightarrow Determine excluded *Q* mass for all possible \mathcal{BR} scenarios

 $\begin{aligned} \mathcal{BR}(T \to Ht) + \mathcal{BR}(T \to Zt) + \mathcal{BR}(T \to Wb) &= 1\\ \mathcal{BR}(B \to Hb) + \mathcal{BR}(B \to Zb) + \mathcal{BR}(B \to Wt) &= 1 \end{aligned}$

ATLAS Searches

Searches for Vector-Like Quarks

Summary of 8 TeV Results

How to cover the largest parameter space?

 \rightarrow Determine excluded *Q* mass for all possible \mathcal{BR} scenarios

$$\begin{aligned} \mathcal{BR}(T \to Ht) + \mathcal{BR}(T \to Zt) + \mathcal{BR}(T \to Wb) &= 1\\ \mathcal{BR}(B \to Hb) + \mathcal{BR}(B \to Zb) + \mathcal{BR}(B \to Wt) &= 1 \end{aligned}$$

ATLAS Searches

Searches for Vector-Like Quarks

Summary of 8 TeV Results

How to cover the largest parameter space?

 \rightarrow Determine excluded *Q* mass for all possible \mathcal{BR} scenarios

$$\begin{aligned} \mathcal{BR}(T \to Ht) + \mathcal{BR}(T \to Zt) + \mathcal{BR}(T \to Wb) &= 1\\ \mathcal{BR}(B \to Hb) + \mathcal{BR}(B \to Zb) + \mathcal{BR}(B \to Wt) &= 1 \end{aligned}$$

Vector-like T

ATLAS Searches

Searches for Vector-Like Quarks

Summary of 8 TeV Results

How to cover the largest parameter space?

 \rightarrow Determine excluded *Q* mass for all possible \mathcal{BR} scenarios

$$\mathcal{BR}(T \to Ht) + \mathcal{BR}(T \to Zt) + \mathcal{BR}(T \to Wb) = 1$$

$$\mathcal{BR}(B \to Hb) + \mathcal{BR}(B \to Zb) + \mathcal{BR}(B \to Wt) = 1$$

Vector-like T

ATLAS Searches

Searches for Vector-Like Quarks

Summary of 8 TeV Results

How to cover the largest parameter space?

 \rightarrow Determine excluded *Q* mass for all possible \mathcal{BR} scenarios

 $\begin{aligned} \mathcal{BR}(T \to Ht) + \mathcal{BR}(T \to Zt) + \mathcal{BR}(T \to Wb) &= 1\\ \mathcal{BR}(B \to Hb) + \mathcal{BR}(B \to Zb) + \mathcal{BR}(B \to Wt) &= 1 \end{aligned}$

Exotic charge VLQ: $\mathcal{BR}(X_{5/3} \to W^+ t) = \mathcal{BR}(Y_{-4/3} \to W^- \bar{b}) = 100\%$

ATLAS Searches

Searches for Vector-Like Quarks

Summary of 8 TeV Results

How to cover the largest parameter space?

 \rightarrow Determine excluded *Q* mass for all possible \mathcal{BR} scenarios

$$\begin{aligned} \mathcal{BR}(T \to Ht) + \mathcal{BR}(T \to Zt) + \mathcal{BR}(T \to Wb) &= 1\\ \mathcal{BR}(B \to Hb) + \mathcal{BR}(B \to Zb) + \mathcal{BR}(B \to Wt) &= 1 \end{aligned}$$

Exotic charge VLQ: $\mathcal{BR}(X_{5/3} \to W^+ t) = \mathcal{BR}(Y_{-4/3} \to W^- \bar{b}) = 100\%$

Vector-like X_{5/3}

ATLAS Searches

Searches for Vector-Like Quarks

Summary of 8 TeV Results

How to cover the largest parameter space?

 \rightarrow Determine excluded *Q* mass for all possible \mathcal{BR} scenarios

$$\begin{aligned} \mathcal{BR}(T \to Ht) + \mathcal{BR}(T \to Zt) + \mathcal{BR}(T \to Wb) &= 1\\ \mathcal{BR}(B \to Hb) + \mathcal{BR}(B \to Zb) + \mathcal{BR}(B \to Wt) &= 1 \end{aligned}$$

Exotic charge VLQ:
$$\mathcal{BR}(X_{5/3} \to W^+ t) = \mathcal{BR}(Y_{-4/3} \to W^- \bar{b}) = 100\%$$

Vector-like X_{5/3}

Vector-like $Y_{-4/3}$

ATLAS Searches

Searches for Vector-Like Quarks

VLQs: From 8 to 13 TeV ...

ATLAS Searches

Searches for Vector-Like Quarks

VLQ @ 13 TeV: Single Production

Why?

 \rightarrow higher sensitivity than pair production, at high mass

Signature:

- $\overline{1}$ lepton + mET (W_{lep}), with mET>120 GeV
- high pT b-jet (>300 GeV)
- forward jets (t-channel)
- lepton back-to-back with b-jet

ATLAS Searches

Searches for Vector-Like Quarks

VLQ @ 13 TeV: Single Production

ATLAS Searches

Searches for Vector-Like Quarks

VLQ @ 13 TeV: Single Production

ATLAS Searches

Searches for Vector-Like Quarks

VLQ @ 13 TeV: Single Production

ATLAS Searches

Searches for Vector-Like Quarks

VLQ @ 13 TeV: Single Production

Direct LHC searches reach constraints similar to LEP & WE precision indirect constraints !

ATLAS Searches

Searches for Vector-Like Quarks

VLQ @ 13 TeV: Pair Production – same-sign

ATLAS Searches

Searches for Vector-Like Quarks

VLQ @ 13 TeV: Pair Production - same-sign

ATLAS Searches

Searches for Vector-Like Quarks

VLQ @ 13 TeV: Pair Production - same-sign

Romain Madar (LPC Clermont-Ferrand)

ATLAS Searches

Searches for Vector-Like Quarks

VLQ @ 13 TeV: Pair Production - same-sign

ATLAS Searches

Searches for Vector-Like Quarks

VLQ @ 13 TeV: Pair Production – ℓ +jets

I+jets boosted topology

$T\overline{T} \rightarrow HtHt, HtZt \text{ and } HtWb$ $T\overline{T} \rightarrow ZtZt \text{ and } ZtWb, \text{ with } Z \rightarrow b\overline{b}$

ATLAS Searches

Searches for Vector-Like Quarks

VLQ @ 13 TeV: Pair Production – ℓ +jets

I+jets boosted topology

 $T\overline{T} \rightarrow HtHt, HtZt \text{ and } HtWb$ $T\overline{T} \rightarrow ZtZt \text{ and } ZtWb, \text{ with } Z \rightarrow b\overline{b}$

ATLAS Searches

Searches for Vector-Like Quarks

VLQ @ 13 TeV: Pair Production – ℓ +jets

I+jets boosted topology

 $T\bar{T} \rightarrow HtHt, HtZt \text{ and } HtWb$ $T\bar{T} \rightarrow ZtZt \text{ and } ZtWb, \text{ with } Z \rightarrow b\bar{b}$

Summary and Outlooks

1 Top Quark Reconstruction

2 Overview of ATLAS Searches

3 ATLAS Searches

- Resonant Searches
- Non-resonant Searches
- Searches for Vector-Like Quarks

Summary and Outlooks

Summary and outlooks

The top quark represents a very promising sector to discover new phenomena. A wide spectrum of ATLAS searches is performed and many updates are to come.

Summary:

- Large number of final states and models scrutinized
- Typical constraints: M > 1 3 TeV, $\mathcal{BR} \lesssim 10^{-3}$
- Updates of results using 13 TeV collisions
- Investigation of interferences: new type of signatures

Outlooks:

- Many analyses are being done using the unique 2016 dataset.
- Stay tuned and start to bet on what the Nature has to say: new boson, new fermion, extra-dimension ...?

Summary and Outlooks

Mar at at	6	late à	⊏ miss	60.00	-11	1 1 14	5		D-4
Model	ι,γ	Jets	ъ т	JT at lu	-1	Limit			Reference
ADD $G_{KK} + g/g$	-	≥ 1 i	Yes	3.2	Ma		6.58 TeV	n = 2	1604.07773
ADD non-resonant ((2 e, µ	_	-	20.3	Ma		4.7 TeV	n = 3 HLZ	1407.2410
ADD QBH $\rightarrow \ell q$	1 e. µ	1 j	-	20.3	Ma		5.2 TeV	n = 6	1311.2006
ADD QBH	-	2)	-	15.7	Ma		8.7 TeV	n = 6	ATLAS-CONF-2016-06
ADD BH high $\sum pT$	$\geq 1 e, \mu$	≥ 2 j	-	3.2	Ma		8.2 TeV	n = 6, M _D = 3 TeV, rot BH	1606.02265
ADD BH multijet	-	≥ 3 j	-	3.6	Mah		9.55 TeV	n = 6, M _D = 3 TeV, rot BH	1512.02586
RS1 $G_{KK} \rightarrow \ell \ell$	2 e, µ	-	-	20.3	G _{KX} mass	2.68	TeV	$k/\overline{M}_{PI} = 0.1$	1405.4123
RS1 $G_{KK} \rightarrow \gamma\gamma$	2 y	-	-	3.2	G _{KOK} mass		L2 TeV	$k/M_{PT} = 0.1$	1606.03833
Bulk RS $G_{KK} \rightarrow WW \rightarrow qqlv$	1 e, µ	1 J	Yes	13.2	G _{KX} mass	1.24 TeV		$k/\overline{M}_{Pl} = 1.0$	ATLAS-CONF-2016-06
Bulk RS $G_{KK} \rightarrow HH \rightarrow bbbb$	-	4 b	-	13.3	G _{ROK} mass	360-860 GeV		$k/M_{Pl} = 1.0$	ATLAS-CONF-2016-04
Bulk RS $g_{KK} \rightarrow tt$	1 e, µ	≥ 1 b, ≥ 1 J/2	4) Yes	20.3	Box mass	2.2 TeV		BR = 0.925	1505.07018
2UED / RPP	1 e, µ	≥ 2 b, ≥ 4 j	Yes	3.2	KK mass	1.46 TeV		Tior (1,1), BR($A^{(1,1)} \rightarrow tt$) = 1	ATLAS-CONF-2016-01:
SSM $Z' \rightarrow \ell\ell$	2 e, µ	-	-	13.3	Z' mass		4.05 TeV		ATLAS-CONF-2016-04
SSM $Z' \rightarrow \tau \tau$	2 T	-	-	19.5	Z' mass	2.02 TeV			1502.07177
Leptophobic $Z' \rightarrow bb$	-	2 b	-	3.2	Z' mass	1.5 TeV			1603.08791
SSM $W' \rightarrow \ell r$	1 e, µ	-	Yes	13.3	W' mass		4.74 TeV		ATLAS-CONF-2016-06
HVT $W' \rightarrow WZ \rightarrow qqrv \mod d$	Α 0 e, μ	1 J	Yes	13.2	W' mass	2.4 Te	V	$g_V = 1$	ATLAS-CONF-2016-08
HVT $W' \rightarrow WZ \rightarrow qqqq$ model	B -	2 J	-	15.5	W' mass	3.	0 TeV	$g_V = 3$	ATLAS-CONF-2016-05
$HVT V' \rightarrow WH/ZH \mod B$	multi-channe	al		3.2	V' moss	2.31 Te	<u>/</u>	$g_V = 3$	1607.05621
LRSM $W'_R \rightarrow tb$	1 e, µ	2 b, 0-1 j	Yes	20.3	W' mass	1.92 TeV			1410.4103
LHSM $W'_R \rightarrow tb$	0 e, µ	≥1b,1J		20.3	W' mass	1.76 TeV			1408.0886
CI ggog	-	21	-	15.7	٨			19.9 TeV 714 = -1	ATLAS-CONF-2016-06
CI (lgg	2 e, µ	-	-	3.2	٨			25.2 TeV 914 = -1	1607.03669
Cl wutt	2(SS)/≥3 e.µ	µ ≥1 b, ≥1 j	Yes	20.3	٨		4.9 TeV	$ C_{EW} = 1$	1504.04605
Axial-vector mediator (Dirac DM	0 e. u	≥ 1 i	Yes	3.2	ma	1.0 TeV		g.+0.25, g.=1.0, m(y) < 250 GeV	1604.07773
Axial-vector mediator (Dirac DM	0 e. u. 1 y	11	Yes	3.2	ma	710 GeV		g.=0.25, g.=1.0, m(y) < 150 GeV	1604.01306
ZZyy EFT (Dirac DM)	0 e. u	1 J. ≤ 1 i	Yes	3.2	Μ.	550 GeV		m(x) < 150 GeV	ATLAS-CONF-2015-08
Scalar LQ 1 st gen	2 e	≥ 2]	-	3.2	LQ mass	1.1 TeV		$\beta = 1$	1605.06035
Scalar LQ 2 ^m gen	2 µ	221		3.2	LQ mass	1.05 TeV		p = 1	1605.06035
Scalar LQ 3 gen	1 e, µ	210,231	Yes	20.3	LQ mass	640 GeV		p = 0	1508.04735
$VLQ TT \rightarrow Ht + X$	1 e, µ	≥ 2 b, ≥ 3 j	Yes	20.3	T mass	855 GeV		T in (T,B) doublet	1505.04306
$VLQ YY \rightarrow Wb + X$	1 e, µ	$\geq 1 b, \geq 3 j$	Yes	20.3	Y mass	770 GeV		Y in (B,Y) doublet	1505.04306
$VLQ BB \rightarrow Hb + X$	1 e, µ	$\geq 2b, \geq 3j$	Yes	20.3	8 mass	735 GeV		isospin singlet	1505.04306
$VLQ BB \rightarrow Zb + X$	2/≥3 e,µ	≥2/≥1 b		20.3	8 mass	755 GeV		B in (B,Y) doublet	1409.5500
$VLQ QQ \rightarrow WqWq$	1 e, µ	≥ 4 j	Yes	20.3	Q mass	690 GeV			1509.04261
VLQ $T_{5/3} T_{5/3} \rightarrow WtWt$	2(SS)/≥3 e4	y ≥1 D, ≥1 J	Yes	3.2	T _{5/3} mass	990 GeV			ATLAS-CONF-2016-03
Excited quark $a^* \rightarrow a\gamma$	1 v	11	-	3.2	g" mass		4.4 TeV	only u^{*} and d^{*} , $\Lambda = m(q^{*})$	1512.05910
Excited quark a* → ag	_	2	-	15.7	g* mass		5.6 TeV	only u^* and d^* , $\Lambda = m(q^*)$	ATLAS-CONF-2016-06
Excited quark b [*] → bg	-	1 b, 1 j	-	8.8	b' mass	2.3 Te	1	,	ATLAS-CONF-2016-06
Excited quark b [*] → Wt	1 or 2 e, µ	1 b, 2-0 j	Yes	20.3	b" mass	1.5 TeV		$f_{g} = f_{L} = f_{R} = 1$	1510.02664
Excited lepton <i>l</i> *	3 e, µ	-	-	20.3	7 mass	3.	0 TeV	$\Lambda = 3.0 \text{ TeV}$	1411.2921
Excited lepton v*	3 e, µ, τ	-	-	20.3	v* mass	1.6 TeV		$\Lambda = 1.6 \text{ TeV}$	1411.2921
	1 4 4 1 2		Max	20.2	ar (7355	060 CeV			1407 8150
$1SICar \rightarrow Wr$	20.4	21		20.3	N ⁰ mass	2.0 TeV		$m(W_{\theta}) = 2.4$ TeV, no mixing	1506.06020
LSTG $a\gamma \rightarrow W\gamma$ LBSM Majorana γ	2 e (SS)	- 1	-	13.9	H ⁴⁴ mass	570 GeV		DY production, BR(H ^{±±} → ee)+1	ATI AS_CONE-2016-05
LSTG $a\gamma \rightarrow W\gamma$ LRSM Majorana ν Higgs triplet $H^{\pm\pm} \rightarrow ee$				10.0		100 0 11		DY production, $BB(H^{++} \rightarrow (\tau)+1$	1411.2921
LSTC $a_T \rightarrow W\gamma$ LRSM Majorana ν Higgs triplet $H^{\pm\pm} \rightarrow ee$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$	3	-	-	20.3					• • • • • • • • • • • • • • • • • • •
LSTC $a_T \rightarrow W\gamma$ LRSM Majorana ν Higgs triplet $H^{\pm\pm} \rightarrow ee$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Monotoc (non-res prod)	3 e, µ, τ 1 e, µ	- 1 b	Yes	20.3	spin-1 invisible particle mass	657 GeV		Aug	1410.5404
LSTG $a_T \rightarrow W\gamma$ LRSM Majorana ν Higgs triplet $H^{\pm\pm} \rightarrow ee$ Higgs triplet $H^{\pm\pm} \rightarrow \ell_T$ Monotop (non-res prod) Multi-charaed particles	3 e,μ,τ 1 e,μ	1 b	Yes	20.3 20.3 20.3	spin-1 invisible particle mass multi-charged particle mass	657 GeV 785 GeV		anon-rm = 0.2 DY production, lgl = 5e	1410.5404
LSTG $a_T \rightarrow W_T$ LRSM Majorana v Higgs triplet $H^{\pm\pm} \rightarrow ee$ Higgs triplet $H^{\pm\pm} \rightarrow \ell r$ Monotop (non-res prod) Multi-charged particles Magnetic monopoles	3 e,μ,τ 1 e,μ -	- 1 b -	Yes -	20.3 20.3 20.3 7.0	spin-1 invisible particle mass multi-charged particle mass monopole mass	657 GeV 785 GeV 1.34 TeV		$a_{non-rm} = 0.2$ DY production, $ q = 5e$ DY production, $ g = 1g_D$, spin 1/2	1410.5404 1504.04188 1509.08059

*Only a selection of the available mass limits on new states or phenomena is shown. Lower bounds are specified only when explicitly not excluded.

†Small-radius (large-radius) jets are denoted by the letter j (J).

Additional material

Backup

Comparison top tagger - 8 TeV

- substructure tagger I: $\sqrt{d_{12}} > 40$ GeV (labeled ' $\sqrt{d_{12}}$ tagger I' in Figure 15)
- substructure tagger II: trimmed anti-k_t R = 1.0 mass m^{jet} > 100 GeV (labeled 'm^{jet} tagger II')
- substructure tagger III: $m^{\text{jet}} > 100 \text{ GeV}$, $\sqrt{d_{12}} > 40 \text{ GeV}$ (labeled ' $m^{\text{jet}} \& \sqrt{d_{12}}$ tagger III')
- substructure tagger IV: m^{iet} > 100 GeV, √d₁₂ > 40 GeV, √d₂₃ > 10 GeV (labeled 'm^{jet} & √d₁₂ & √d₁₂ tagger IV')

ATLAS-CONF-2013-084

- substructure tagger V: m^{jet} > 100 GeV, √d₁₂ > 40 GeV, √d₂₃ > 20 GeV (labeled 'm^{jet} & √d₁₂ & √d₁₂ tagger V')
- substructure tagger VI: √d₁₂ > 40 GeV, 0.4 < τ₂₁ < 0.9, τ₃₂ < 0.65 (labeled ' √d₁₂ & N-subjettiness tagger VI')

Additional material

$X \rightarrow t\bar{b} @ 8 \text{ TeV}$

 $\mathcal{L}_{\mathrm{eff}} = rac{V'_{ij}}{2\sqrt{2}}ar{f}_i \gamma^\mu \left(g^R_{ij}P_R + g^L_{ij}P_L\right)W'_\mu f_j + \mathrm{h.c.}$

- Predicted in many BSM extensions
- Cover W' that doen't couple to leptons For g^{L} , interference with SM W boson

$X \rightarrow t \bar{b} @ 8 \text{ TeV}$

$$\mathcal{L}_{ ext{eff}} = rac{V_{ij}'}{2\sqrt{2}}ar{f}_i\,\gamma^\mu\left(g^R_{ij}P_R+g^L_{ij}P_L
ight)W_\mu'f_j\,+\, ext{h.c.}$$

- Predicted in many BSM extensions
- Cover W' that doen't couple to leptons
- For g^L, interference with SM W boson

$X \rightarrow t\bar{b} @ 8 \text{ TeV}$

$X \rightarrow t\bar{b} @ 8 \text{ TeV}$

W'_R mass [TeV]

$X \rightarrow t\bar{b} @ 8 \text{ TeV}$

W'_B mass [TeV]

Additional material

$X \rightarrow t \varphi_{inv} @ 8 \text{ TeV}$

- Signal motivated by several models
- Use an effective Lagrangien approch
- Interesting interepretations in term of DM
- Unusual final state → good to search for NP !

Additional material

$X \rightarrow t \varphi_{inv} @ 8 \text{ TeV}$

Additional material

$X \rightarrow t \varphi_{inv} @ 8 \text{ TeV}$

- Signal motivated by several models - Use an effective Lagrangien approch - Interesting interepretations in term of DM - Unusual final state → good to search for NP ! Events / 40 GeV 220 ATLAS Data 200 vs = 8 TeV, 20.3 fb Res. signal, S 500 GeV f..... 100 GeV 180 SRI, e[±]/µ[±] Top-pair, single-top 160 140 W+jets, dibosons 120 Bkg. uncertainty 100 80 40 20 Data/Pred. 1.5 0.5 150 200 350 40 E^{miss}_T [GeV] 250 300 400

Additional material

$X \rightarrow t \varphi_{inv} @ 8 \text{ TeV}$

Additional material

$X \rightarrow t \varphi_{\rm inv} @ 8 { m TeV}$

