Observation of a Higgs boson at 125 GeV and search for an additional low-mass Higgs boson in the diphoton channel in CMS

Benoit Courbon

IPN Lyon

LIO International Conference, September 5th 2016

Introduction

- ullet LHC and CMS are in pretty good shape in 2016 : more than 25 fb $^{-1}$ already recorded!
- Main challenges in the Higgs sector :
 - "Rediscover" the 125 GeV Higgs boson
 - Explore further its compability with the Standard Model :
 - ightarrow Measure its properties with the best precision
 - \to Interpret its existence in the context BSM models with extended Higgs sector, and search for additional Higgs bosons
- We focus in this talk on the "golden" di-photon channel : clean signature, excellent mass resolution

Observation of a Higgs boson at 125 GeV in the diphoton channel with 2016 data (CMS-PAS-HIG-16-020)

Introduction

Run 1 results in a nutshell

Local significance of 5.7 σ

$$m_H = 124.70 \pm 0.34 \text{ GeV}$$

 $(\pm 0.31(stat) \pm 0.15(syst))$

$$\mu(m_H = 124.7 \,\text{GeV}) = 1.14^{+0.26}_{-0.23} \ (\pm 0.21(\text{stat})^{+0.09}_{-0.05}(\text{syst})^{+0.13}_{-0.09}(\text{theo}))$$

Analysis overview

- Diphoton channel : Small branching fraction ($\sim 2.10^{-3}$ at $m_H=125$ GeV) but clean signature : 2 high- p_T isolated photons
- Analysis strategy: Search for a narrow peak on a smoothly decreasing background in the diphoton mass spectra
- Large diphoton background : Reducible (jet-jet or γ -jet with jet faking photon) and irreducible (γ - γ)
- Mass resolution is crucial (energy resolution and vertex identification)
- Categorization of diphoton events to gain in sensitivity and to tag production modes
- ullet We report the **2016 results** presented at ICHEP, corresponding to **L=12.9 fb**⁻¹ and $\sqrt{s}=13$ TeV
- Challenging pile-up conditions : <PU>=18.5

Mass resolution

$$m_{\gamma\gamma} = \sqrt{2E_1E_2(1-\cos\theta)}$$

Energy resolution :

- Detector level corrections : crystal intercalibration, crystal transparency loss
- Photon energy regression: multivariate energy correction method taking in account showering, gap/crack effects, PU ...
- ullet Final energy scale and resolution extracted from Z
 ightarrow ee events

Vertex identification :

- Not trivial due to the non-longitudinal segmentation of ECAL and the presence of PU
- Boosted Decision Trees (BDT) used to select the vertex, based on the kinematic of recoil tracks and conversion tracks if present
- Second BDT to estimate the probability of good vertex identification ($\Delta z < 1$ cm)
- Average vertexing efficiency: 80 %
- ullet Methods validated on data with $Z o \mu \mu$ events

Photon selection

- ullet Trigger and pre-selection based on loose cuts on transverse energy, $m_{\gamma\gamma}$, isolation and shower shape variables
- Main photon background : neutral mesons (π^0) inside jets decaying into a pair of boosted (unresolved) photons
- BDT based method to discriminate prompt photons from background : "Photon ID"
- Inputs: shower shape, isolation, kinematic, PU-related variables
- Loose Photon ID score cut applied, then this score is used for event classification

Event categorization ("untagged" classes)

- \bullet To improve the analysis sensitivity, categorization of events into classes according to compability with $H \to \gamma \gamma$ signal and mass resolution
- BDT based classificator : "DiPhoton BDT"
- Inputs :
 - diphoton pair kinematic
 - Photon ID scores
 - mass resolution under correct / incorrect vertex selection hypotheses
 - vertex identification probability

All inputs are normalized by $m_{\gamma\gamma}$ so no mass region is favorized

 Build 4 "Untagged" classes by cutting on DiPhoton BDT score

Event categorization ("tagged" classes)

 Build additional classes in order to tag specific production modes: VBF and ttH

- VBF signature : 2 high-p_T jets with large rapidity gap
- First BDT (BDT_{jj}) to select diphoton events with a jet pair compatible with VBF mode
- Inputs : dijet diphoton system kinematics
- Second BDT (BDT_{$jj\gamma\gamma$}) combining BDT_{jj} and DiPhoton BDT information
- 2 VBF Tag classes ("tight" and "loose") based on cuts on BDT $_{ii\gamma\gamma}$ score
- ttH: pair of tops decaying into 2 b-quarks and 2 W bosons
- ttH leptonic Tag class: at least 2 jets including 1
 b-jet, at least 1 lepton (e,μ) in the diphoton event
- ttH hadronic Tag class : at least 5 jets including 1
 b-iet. no lepton

ttH

Signal Model

- Use $H \rightarrow \gamma \gamma$ MC samples with m_H =120, 123, 124, 125, 126, 127 and 130 GeV
- ullet Fit the signal shape with a sum of gaussians for each category imes process imes correct / incorrect vertexing
- Model interpolated between the mass points
- Physical nuisances allowed to float in the model

CMS Simulation Preliminary 13 TeV H→γγ Untagged 0 Parametric model σ_{et} = 1.18 GeV FWHM = 2.42 GeV

120 125

m,, (GeV)

Untagged 0 class

Events / (0.5 GeV)

1.6

1.2

8.0

0.6

0.2

Background Model

- Fit directly on data
- "Discrete profiling method"
- Build an envelope of functions with good fit to data, selected among general class of functions
- Choice of the fit function inside the envelope treated as a nuisance parameter

Example with pseudodata

[Dauncey et al., "Handling uncertainties in background shapes", 1408.6865]

Systematics

- Theory uncertainties : PDFs, α_s , QCD scale, underlying event and parton shower, $H \to \gamma \gamma$ branching fraction
- Trigger, vertex selection and preselection, integrated luminosity
- Photon energy scale and resolution
- Photon ID and per-photon energy resolution from regression
- Non-uniformity of light collection, non-linearity, detector simulation, modeling of material budget, shower shape corrections
- ggH contamination in VBF and ttH categories
- Jet energy scale and smearings
- b-tagging efficiency, electron and muon ID efficiency

Introduction ${\it H_{125}}
ightarrow \gamma \gamma$ Low-mass $h
ightarrow \gamma \gamma$ Conclusions Back-up

Mass spectra, untagged classes

Introduction ${\it H_{125}}
ightarrow \gamma \gamma$ Low-mass $h
ightarrow \gamma \gamma$ Conclusions Back-up

Mass spectra, tagged classes

Results: significance

- Rediscovery of the Higgs boson in the diphoton channel
- Observed significance at m_H =125.09 GeV : 5.6 σ (6.2 expected)
- Maximum observed significance is 6.1 σ at 126.0 GeV

Weighted total spectra

Local P-value

Results: signal strengths

- $\mu = 0.95^{+0.21}_{-0.19} = 0.95 \pm 0.17(stat)^{+0.10}_{-0.07}(syst)^{+0.08}_{-0.05}(theo)$
- $\mu_{ggH,ttH} = 0.80^{+0.14}_{-0.18}$
- $\mu_{VBF,VH} = 1.59^{+0.73}_{-0.45}$

Search for an additional low-mass Higgs boson in the diphoton channel with 2012 data (CMS-PAS-HIG-14-037)

Motivations

Some BSM models, such as 2HDM and NMSSM, feature an extended Higgs sector

- \bullet One can identify H_{125} as the next-to-lightest scalar and then search for the lightest one h
- Accessible signal strengths predicted in the diphoton channel within those scenarios:
 - 2HDM : $\sigma(h \to \gamma \gamma)$ up to 100 fb [Cacciapaglia et al., 1607.08653] See more in next talk by S. Le Corre
 - NMSSM : $\sigma(h \to \gamma \gamma)/\sigma(h \to \gamma \gamma)_{SM}$ up to 3.5 [J.Fan et al., 1309.6394]
- lacktriangle Di-photon channel : good mass resolution \rightarrow ability to explore the Higgs sector close to the Z peak
- Small excess at LEP at $m_h \sim 98$ GeV in bb / $\tau\tau$ channels (3 of 4 experiments) [LEPHWG, Phys. Lett. B565:61-75,2003]

Analysis overview

- Low-mass bound set by the trigger, featuring a 70 GeV mass cut during Run 1
- 2012 data, L=19.7 fb⁻¹, \sqrt{s} = 8 TeV, <PU>=19.5

- Many ingredients inherited from the standard $H \to \gamma \gamma$ analysis : Photon reconstruction and energy corrections, vertex identification, Photon ID, DiPhoton BDT
- Low-mass specificity: Drell-Yan background, with electrons from the Z misidentified as photons:
 - Use of a strict electron veto based on the pixel detector
 - Include relic DY contribution in background model
- 4 untagged classes, no tagged classes (not enough DY statistic)

Introduction $H_{125}
ightarrow \gamma \gamma$ Low-mass $h
ightarrow \gamma \gamma$ Conclusions Back-up

Signal and Background Models

Signal

- Same signal modelling method as the standard analysis
- We assume that the signal shape correspond to that of a standard Higgs boson

Background

- We model the relic Drell-Yann contribution with a double-sided Crystal-Ball (DCB)
- Fit performed on MC DY events passing all our selection
- We model the continuum background with Bernstein polynomials (proven not to bias the signal strength)
- Final background model: Bernsteins + DCB, with DCB fraction let floating
- Fit performed on the data

Signal model, all classes

DY model class 0

Systematics

- Systematics common to the standard analysis :
 - Theory (PDFs, QCD scale, BR)
 - Luminosity, trigger, vertex identification
 - Photon energy scale and resolution, preselection, Photon ID
- Systematics specific to the low-mass analysis related to the Z peak modelling
- Choose a region with no signal: "single-fake" selection (1 photon and 1 electron passing our selection)
- ullet Compute differences on DCB parameters (peak, μ and width, σ) between "single-fake" data and MC
- Final uncertainty on these parameters: quadrative sum of the data / MC differences and the purely statistical errors

Class	μ (GeV)	$\Delta\mu$ (GeV)	σ (GeV)	$\Delta \sigma$ (GeV)
0	89.9	0.8	1.5	2.2
1	90.6	0.8	1.8	2.2
2	89.6	0.8	1.8	2.2
3	89.2	0.8	3.2	2.2

Introduction $H_{125}
ightarrow \gamma \gamma$ Low-mass $h
ightarrow \gamma \gamma$ Conclusions Back-up

Mass spectra

Untagged 0

Untagged 2

Untagged 1

Untagged 3

Introduction $H_{125} o \gamma \gamma$ Low-mass $h o \gamma \gamma$ Conclusions Back-up

Results

- No evidence for new particle
- Small deviation at m_h =97.5 GeV (1.9 σ), not observed by Atlas
- See S. Le Corre talk for 2HDM interpretation!

Plans for Run 2

- Analysis to be continued with Run 2 data
- Use of a dedicated trigger allowing to extend the search range down to 65 70 GeV
- Many analysis improvements foreseen (tagged categories, envelope method for the background ...)
- Most ingredients are in place, full analysis workflow tested successfully with 2015 data
- Public results coming soon with 2016 data

Conclusions

- 125 GeV Higgs boson rediscovered in the diphoton channel with 2016 data
- All couplings consistent with the Standard Model
- Additional Higgs bosons searches performed in the interval [80,110 GeV], in the diphoton channel, with 2012 data
- No evidence for new particles reported
- Search continued with Run 2 data
- ullet The precise property measurements of H_{125} and the search for additional Higgs bosons are two complementary approaches to explore the compatibility of the Higgs sector with the Standard Model

BACK-UP

Event classes

Event Categories	SM 125GeV Higgs boson expected signal							Bkg	
Event Categories	Total	ggh	vbf	wh	zh	tth	σ_{eff}	σ_{HM}	(GeV ⁻¹)
Untagged Tag 0	11.92	79.10 %	7.60 %	7.11 %	3.59 %	2.60 %	1.18	1.03	4.98
Untagged Tag 1	128.78	85.98 %	7.38 %	3.70 %	2.12 %	0.82 %	1.35	1.20	199.14
Untagged Tag 2	220.12	91.11 %	5.01 %	2.18 %	1.23 %	0.47 %	1.70	1.47	670.44
Untagged Tag 3	258.50	92.35 %	4.23 %	1.89 %	1.06 %	0.47 %	2.44	2.17	1861.23
VBF Tag 0	9.35	29.47 %	69.97 %	0.29 %	0.07 %	0.20 %	1.60	1.33	3.09
VBF Tag 1	15.55	44.91 %	53.50 %	0.86 %	0.38 %	0.35 %	1.71	1.40	22.22
TTH Hadronic Tag	2.42	16.78 %	1.28 %	2.52 %	2.39 %	77.02 %	1.39	1.21	1.12
TTH Leptonic Tag	1.12	1.09 %	0.08 %	2.43 %	1.06 %	95.34 %	1.61	1.35	0.42
Total	647.77	87.93 %	7.29 %	2.40 %	1.35 %	1.03 %	1.88	1.52	2762.65

H125 Reduced couplings

H125 Reduced couplings

Introduction ${\it H}_{\it 125}
ightarrow \gamma \gamma$ Low-mass ${\it h}
ightarrow \gamma \gamma$ Conclusions Back-up

H125 Fiducial cross section

Benoit Courbon CMS $H o \gamma \gamma$ 30 / 30