Recent anomalies in flavour physics

> Nazila Mahmoudi Lyon University \& CERN

LIO international conference on Composite Models, Electroweak Physics and the LHC

IPNL, Lyon 5-8 septembre 2016

Outline

- Introduction
\rightarrow Theoretical framework
- Observables
\rightarrow Recent anomalies
- Implications
\rightarrow Model independent global fits
\rightarrow Implications for Wilson coefficients
\rightarrow Assessment of the theoretical uncertainties
\rightarrow Identifying the origin of the anomalies
\rightarrow Model dependent interpretations
- Conclusions

Indirect search for New Physics

- In the past, the objective of flavour physics experiments was focused on the tests of the Standard Model and the CKM paradigm
\rightarrow This is now well established!
- Focus is now towards the new physics!

And search for the indirect signs of new physics

LHCb has a very rich program to search for indirect signs of new physics! Main probes: Rare decays

Indirect search for New Physics

- In the past, the objective of flavour physics experiments was focused on the tests of the Standard Model and the CKM paradigm
\rightarrow This is now well established!
- Focus is now towards the new physics!

And search for the indirect signs of new physics

Indirect search for New Physics

- In the past, the objective of flavour physics experiments was focused on the tests of the Standard Model and the CKM paradigm
\rightarrow This is now well established!
- Focus is now towards the new physics!

And search for the indirect signs of new physics

Indirect search for New Physics

- In the past, the objective of flavour physics experiments was focused on the tests of the Standard Model and the CKM paradigm
\rightarrow This is now well established!
- Focus is now towards the new physics!

And search for the indirect signs of new physics

Eratosthenes discovered the roundness of the Earth... about 2300 years before its direct observation!

Indirect search for New Physics

- In the past, the objective of flavour physics experiments was focused on the tests of the Standard Model and the CKM paradigm
\rightarrow This is now well established!
- Focus is now towards the new physics!

And search for the indirect signs of new physics

Eratosthenes discovered the roundness of the Earth... about 2300 years before its direct observation!

- LHCb has a very rich program to search for indirect signs of new physics! Main probes: Rare decays

Why rare decays are interesting?

- Rare B decays occur at loop level
\rightarrow The SM contributions are very small and the NP contributions can have a comparable magnitude.
- The theory ingredients are known at a very good accuracy!

In particular: QCD corrections are known with a good precision!

- Very promising experimental situation
- Branching ratios and distributions can be measured precisely
\Rightarrow Rare B decays are IDEAL CHOICES to search for New Physics!

Why rare decays are interesting?

- Rare B decays occur at loop level
\rightarrow The SM contributions are very small and the NP contributions can have a comparable magnitude.
- The theory ingredients are known at a very good accuracy!

In particular: QCD corrections are known with a good precision!

- Very promising experimental situation

\rightarrow Branching ratios and distributions can be measured precisely
\Rightarrow Rare B decays are IDEAL CHOICES to search for New Physics!

Why rare decays are interesting?

- Rare B decays occur at loop level
\rightarrow The SM contributions are very small and the NP contributions can have a comparable magnitude.
- The theory ingredients are known at a very good accuracy!

In particular: QCD corrections are known with a good precision!

- Very promising experimental situation
\rightarrow Branching ratios and distributions can be measured precisely
\Rightarrow Rare B decays are IDEAL CHOICES to search for New Physics!

Why rare decays are interesting?

- Rare B decays occur at loop level
\rightarrow The SM contributions are very small and the NP contributions can have a comparable magnitude.
- The theory ingredients are known at a very good accuracy!

In particular: QCD corrections are known with a good precision!

- Very promising experimental situation
\rightarrow Branching ratios and distributions can be measured precisely
\Rightarrow Rare B decays are IDEAL CHOICES to search for New Physics!

Theoretical framework
A multi-scale problem

- new physics: $1 / \Lambda_{\mathrm{NP}}$
- electroweak interactions: $1 / M_{W}$
- hadronic effects: $1 / m_{b}$
- QCD interactions: $1 / \Lambda_{\mathrm{QCD}}$

\Rightarrow Effective field theory approach:

separation between low and high energies using Operator Product Expansion
o short distance: Wilson coefficients, computed perturbatively

- long distance: local operators

New physics:

Theoretical framework

A multi-scale problem

- new physics: $1 / \Lambda_{\mathrm{NP}}$
- electroweak interactions: $1 / M_{W}$
- hadronic effects: $1 / m_{b}$
- QCD interactions: $1 / \Lambda_{\mathrm{QCD}}$
\Rightarrow Effective field theory approach:
separation between low and high energies using Operator Product Expansion
- short distance: Wilson coefficients, computed perturbatively
- long distance: local operators

$$
\mathcal{H}_{\mathrm{eff}}=-\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{*}\left(\sum_{i=1 \cdots 10, S, P}\left(C_{i}(\mu) \mathcal{O}_{i}(\mu)+C_{i}^{\prime}(\mu) \mathcal{O}_{i}^{\prime}(\mu)\right)\right)
$$

Theoretical framework

A multi-scale problem

- new physics: $1 / \Lambda_{\mathrm{NP}}$
- electroweak interactions: $1 / M_{W}$
- hadronic effects: $1 / m_{b}$
- QCD interactions: $1 / \Lambda_{\mathrm{QCD}}$
\Rightarrow Effective field theory approach:
separation between low and high energies using Operator Product Expansion
- short distance: Wilson coefficients, computed perturbatively
- long distance: local operators

$$
\mathcal{H}_{\mathrm{eff}}=-\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{*}\left(\sum_{i=1 \cdots 10, S, P}\left(C_{i}(\mu) \mathcal{O}_{i}(\mu)+C_{i}^{\prime}(\mu) \mathcal{O}_{i}^{\prime}(\mu)\right)\right)
$$

New physics:

- Corrections to the Wilson coefficients: $C_{i} \rightarrow C_{i}+\Delta C_{i}^{N P}$
- Additional operators: $\sum_{j} C_{j}^{N P} \mathcal{O}_{j}^{N P}$

Operators

$$
\begin{aligned}
& \mathcal{O}_{1}=\left(\bar{s} \gamma_{\mu} T^{a} P_{L} c\right)\left(\bar{c} \gamma^{\mu} T^{a} P_{L} b\right) \\
& \mathcal{O}_{2}=\left(\bar{s} \gamma_{\mu} P_{L} c\right)\left(\bar{c} \gamma^{\mu} P_{L} b\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{O}_{3}=\left(\bar{s} \gamma_{\mu} P_{L} b\right) \sum_{q}\left(\bar{q} \gamma^{\mu} q\right) \\
& \mathcal{O}_{4}=\left(\bar{s} \gamma_{\mu} T^{a} P_{L} b\right) \sum_{q}\left(\bar{q} \gamma^{\mu} T^{a} q\right) \\
& \mathcal{O}_{5}=\left(\bar{s} \gamma_{\mu_{1}} \gamma_{\mu_{2}} \gamma_{\mu_{3}} P_{L} b\right) \sum_{q}\left(\bar{q} \gamma^{\mu_{1}} \gamma^{\mu_{2}} \gamma^{\mu_{3}} q\right) \\
& \mathcal{O}_{6}=\left(\bar{s} \gamma_{\mu_{1}} \gamma_{\mu_{2}} \gamma_{\mu_{3}} T^{a} P_{L} b\right) \sum_{q}\left(\bar{q} \gamma^{\mu_{1}} \gamma^{\mu_{2}} \gamma^{\mu_{3}} T^{a} q\right)
\end{aligned}
$$

$$
\mathcal{O}_{7}=\frac{e}{16 \pi^{2}}\left[\bar{s} \sigma^{\mu \nu}\left(m_{s} P_{L}+m_{b} P_{R}\right) b\right] F_{\mu \nu}
$$

$$
\mathcal{O}_{8}=\frac{g}{16 \pi^{2}}\left[\bar{s} \sigma^{\mu \nu}\left(m_{s} P_{L}+m_{b} P_{R}\right) T^{a} b\right] G_{\mu \nu}^{a}
$$

$$
\mathcal{O}_{9}=\frac{e^{2}}{(4 \pi)_{2}^{2}}\left(\bar{s} \gamma^{\mu} b_{L}\right)\left(\bar{I} \gamma_{\mu} I\right)
$$

$$
\mathcal{O}_{10}=\frac{e^{2}}{(4 \pi)^{2}}\left(\bar{s} \gamma^{\mu} b_{L}\right)\left(\bar{l} \gamma_{\mu} \gamma_{5} l\right)
$$

Magnetic operators

Wilson coefficients

Two main steps:

- Calculating $C_{i}^{\text {eff }}(\mu)$ at scale $\mu \sim M_{W}$ by requiring matching between the effective and full theories

$$
C_{i}^{\text {eff }}(\mu)=C_{i}^{(0) e f f}(\mu)+\frac{\alpha_{s}(\mu)}{4 \pi} C_{i}^{(1) e f f}(\mu)+\cdots
$$

- Evolving the $C_{i}^{\text {eff }}(\mu)$ to scale $\mu \sim m_{b}$ using the RGE:

$$
\mu \frac{d}{d \mu} C_{i}^{\text {eff }}(\mu)=C_{j}^{\text {eff }}(\mu) \gamma_{j i}^{\text {eff }}(\mu)
$$

driven by the anomalous dimension matrix $\hat{\gamma}^{\text {eff }}(\mu)$:

$$
\hat{\gamma}^{\text {eff }}(\mu)=\frac{\alpha_{s}(\mu)}{4 \pi} \hat{\gamma}^{(0) e f f}+\frac{\alpha_{s}^{2}(\mu)}{(4 \pi)^{2}} \hat{\gamma}^{(1) \text { eff }}+\cdots
$$

Hadronic quantities

To compute the amplitudes:

$$
\mathcal{A}(A \rightarrow B)=\langle B| \mathcal{H}_{\mathrm{eff}}|A\rangle=\frac{G_{F}}{\sqrt{2}} \sum_{i} \lambda_{i} C_{i}(\mu)\langle B| \mathcal{O}_{i}|A\rangle(\mu)
$$

$\langle B| \mathcal{O}_{i}|A\rangle$: hadronic matrix element

How to compute matrix elements?
\rightarrow Model building, Lattice simulations, Light flavour symmetries, Heavy flavour symmetries, ...
\rightarrow Describe hadronic matrix elements in terms of hadronic quantities

Two types of hadronic quantities:

- Decay constants: Probability amplitude of hadronising quark pair into a given hadron
- Form factors: Transition from a meson to another through flavour change

LHCb measurements

Impressive effort in studying exclusive $b \rightarrow s \ell \ell$ transitions at LHCb with the measurements of a large number of independent angular observables!
$B \rightarrow K \mu^{+} \mu^{-}, B \rightarrow K^{+} e^{+} e^{-}, B \rightarrow K^{*} \mu^{+} \mu^{-}\left(F_{L}, A_{F B}, S_{i}, P_{i}\right), B_{s} \rightarrow \phi \mu^{+} \mu^{-}, \ldots$

Deviations from the SM predictions in $B \rightarrow K^{*} \mu^{+} \mu^{-}, B_{s} \rightarrow \phi \mu^{+} \mu^{-}$and R_{K} : "anomalies"

$B \rightarrow K^{*} \mu^{+} \mu^{-}-$Angular distributions

Angular distributions

The full angular distribution of the decay $\bar{B}^{0} \rightarrow \bar{K}^{* 0} \ell^{+} \ell^{-}\left(\bar{K}^{* 0} \rightarrow K^{-} \pi^{+}\right)$is completely described by four independent kinematic variables: q^{2} (dilepton invariant mass squared), $\theta_{\ell}, \theta_{K^{*}, \phi}$

Differential decay distribution:

$$
\overline{d q^{2} d \cos \theta_{\ell} d \cos \theta_{K^{*}} d \phi}=\frac{}{32 \pi} J\left(q^{2}, \theta_{\ell}, \theta_{K^{*}}, \phi\right)
$$

$B \rightarrow K^{*} \mu^{+} \mu^{-}-$Angular distributions

Angular distributions

The full angular distribution of the decay $\bar{B}^{0} \rightarrow \bar{K}^{* 0} \ell^{+} \ell^{-}\left(\bar{K}^{* 0} \rightarrow K^{-} \pi^{+}\right)$is completely described by four independent kinematic variables: q^{2} (dilepton invariant mass squared), $\theta_{\ell}, \theta_{K^{*}}, \phi$

Differential decay distribution:

$$
\begin{gathered}
\frac{d^{4} \Gamma}{d q^{2} d \cos \theta_{\ell} d \cos \theta_{K^{*}} d \phi}=\frac{9}{32 \pi} J\left(q^{2}, \theta_{\ell}, \theta_{K^{*}}, \phi\right) \\
J\left(q^{2}, \theta_{\ell}, \theta_{K^{*}}, \phi\right)=\sum_{i} J_{i}\left(q^{2}\right) f_{i}\left(\theta_{\ell}, \theta_{K^{*}}, \phi\right) \\
\searrow \text { angular coefficients } J_{1-9} \\
\searrow \text { functions of the spin amplitudes } A_{0}, A_{\|}, A_{\perp}, A_{t}, \text { and } A_{S}
\end{gathered}
$$

Spin amplitudes: functions of Wilson coefficients and form factors
Main operators:

$$
\begin{array}{ll}
\mathcal{O}_{9}=\frac{e^{2}}{(4 \pi)^{2}}\left(\bar{s} \gamma^{\mu} b_{L}\right)\left(\bar{\ell} \gamma_{\mu} \ell\right), & \mathcal{O}_{10}=\frac{e^{2}}{(4 \pi)^{2}}\left(\bar{s} \gamma^{\mu} b_{L}\right)\left(\bar{\ell} \gamma_{\mu} \gamma_{5} \ell\right) \\
\mathcal{O}_{S}=\frac{e^{2}}{16 \pi^{2}}\left(\bar{s}_{L}^{\alpha} b_{R}^{\alpha}\right)(\bar{\ell} \ell), & \mathcal{O}_{P}=\frac{e^{2}}{16 \pi^{2}}\left(\bar{s}_{L}^{\alpha} b_{R}^{\alpha}\right)\left(\bar{\ell} \gamma_{5} \ell\right)
\end{array}
$$

W. Altmannshofer et al., JHEP 0901 (2009) 019; U. Egede et al., JHEP 1010 (2010) 056

Optimised observables: form factor uncertainties cancel at leading order

$$
\begin{array}{ll}
\left\langle P_{1}\right\rangle_{\text {bin }}=\frac{1}{2} \frac{\int_{\text {bin }} d q^{2}\left[J_{3}+J_{3}\right]}{\int_{\text {bin }} d q^{2}\left[J_{2 s}+\bar{J}_{2 s}\right]} & \left\langle P_{2}\right\rangle_{\text {bin }}=\frac{1}{8} \frac{\int_{\text {bin }} d q^{2}\left[J_{6 s}+\bar{J}_{6 s}\right]}{\int_{\text {bin }} d q^{2}\left[J_{2 s}+\bar{J}_{2 s}\right]} \\
\left\langle P_{4}^{\prime}\right\rangle_{\text {bin }}=\frac{1}{\mathcal{N}_{\text {bin }}^{\prime}} \int_{\text {bin }} d q^{2}\left[J_{4}+\bar{J}_{4}\right] & \left\langle P_{5}^{\prime}\right\rangle_{\text {bin }}=\frac{1}{2 \mathcal{N}_{\text {bin }}^{\prime}} \int_{\text {bin }} d q^{2}\left[J_{5}+\bar{J}_{5}\right] \\
\left\langle P_{6}^{\prime}\right\rangle_{\text {bin }}=\frac{-1}{2 \mathcal{N}_{\text {bin }}^{\prime}} \int_{\text {bin }} d q^{2}\left[J_{7}+\bar{J}_{7}\right] & \left\langle P_{8}^{\prime}\right\rangle_{\text {bin }}=\frac{-1}{\mathcal{N}_{\text {bin }}^{\prime}} \int_{\text {bin }} d q^{2}\left[J_{8}+J_{8}\right]
\end{array}
$$

with

$$
\mathcal{N}_{\text {bin }}^{\prime}=\sqrt{-\int_{\text {bin }} d q^{2}\left[J_{2 s}+\bar{J}_{2 s}\right] \int_{\text {bin }} d q^{2}\left[J_{2 c}+\overline{J_{2 c}}\right]}
$$

+CP violating clean observables and other combinations

$$
\begin{aligned}
& \text { U. Egede et al., JHEP } 0811 \text { (2008) 032, JHEP } 1010 \text { (2010) } 056 \\
& \text { J. Matias et al., JHEP } 1204 \text { (2012) } 104 \\
& \text { S. Descotes-Genon et al., JHEP } 1305 \text { (2013) } 137
\end{aligned}
$$

Or alternatively:

$$
S_{i}=\frac{J_{i(s, c)}+J_{i(s, c)}}{\frac{d \Gamma}{d q^{2}}+\frac{d \tau_{i}^{2}}{d q^{2}}}, \quad P_{4,5,8}^{\prime}=\frac{S_{4,5,8}}{\sqrt{F_{L}\left(1-F_{L}\right)}}
$$

The LHCb anomalies (1)

$B \rightarrow K^{*} \mu^{+} \mu^{-}$angular observables, in particular P_{5}^{\prime} / S_{5}

- $2013\left(1 \mathrm{fb}^{-1}\right)$: disagreement with the SM for P_{2} and P_{5}^{\prime} (PRL 111, 191801 (2013))
- Dec. 2015: 2 analysis methods, both show the deviations (JHEP 1602, 104 (2016))

3.7σ deviation in the 3rd bin

The LHCb anomalies (1)

$B \rightarrow K^{*} \mu^{+} \mu^{-}$angular observables, in particular P_{5}^{\prime} / S_{5}

- $2013\left(1 \mathrm{fb}^{-1}\right)$: disagreement with the SM for P_{2} and P_{5}^{\prime} (PRL 111, 191801 (2013))
- March 2015 ($3 \mathrm{fb}^{-1}$): confirmation of the deviations (LHCb-CONF-2015-002)

3.7 σ deviation in the 3rd bin

2.9σ in the 4th and 5th bins (3.7 σ combined)

The LHCb anomalies (1)

$B \rightarrow K^{*} \mu^{+} \mu^{-}$angular observables, in particular P_{5}^{\prime} / S_{5}

- $2013\left(1 \mathrm{fb}^{-1}\right)$: disagreement with the SM for P_{2} and P_{5}^{\prime} (PRL 111, 191801 (2013))
- March 2015 ($3 \mathrm{fb}^{-1}$): confirmation of the deviations (LHCb-CONF-2015-002)
- Dec. 2015: 2 analysis methods, both show the deviations (JHEP 1602, 104 (2016))

3.7σ deviation in the 3 rd bin

2.9σ in the 4 th and 5 th bins (3.7 σ combined)

3.4σ combined fit (likelihood)

The LHCb anomalies (1)

$B \rightarrow K^{*} \mu^{+} \mu^{-}$angular observables, in particular P_{5}^{\prime} / S_{5}

- $2013\left(1 \mathrm{fb}^{-1}\right)$: disagreement with the SM for P_{2} and P_{5}^{\prime} (PRL 111, 191801 (2013))
- March 2015 ($3 \mathrm{fb}^{-1}$): confirmation of the deviations (LHCb-CONF-2015-002)
- Dec. 2015: 2 analysis methods, both show the deviations (JHEP 1602, 104 (2016))

3.7 σ deviation in the 3rd bin

Belle supports LHCb (arXiv:1604.04042)
tension at 2.1σ

2.9σ in the 4th and 5th bins (3.7 σ combined)

3.4σ combined fit (likelihood)

The LHCb anomalies (2)
$B_{s} \rightarrow \phi \mu^{+} \mu^{-}$branching fraction

- Same theoretical description as $B \rightarrow K^{*} \mu^{+} \mu^{-}$
- June $2015\left(3 \mathrm{fb}^{-1}\right)$: the differential branching fraction is found to be 3.2σ below the SM predictions in the $[1-6] \mathrm{GeV}^{2}$ bin

$$
\text { JHEP } 1509 \text { (2015) } 179
$$

The LHCb anomalies (3)
Lepton universality in $B^{+} \rightarrow K^{+} \ell^{+} \ell^{-}$

- June $2015\left(3 \mathrm{fb}^{-1}\right)$: measurement of R_{K} in the [1-6] GeV^{2} bin 2.6σ tension in [1-6] GeV^{2} bin

$$
R_{K}=B R\left(B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}\right) / B R\left(B^{+} \rightarrow K^{+} e^{+} e^{-}\right)
$$

$$
R_{K}^{S M} \approx 1
$$

$$
R_{K}^{\exp }=0.745_{-0.074}^{+0.090}(\text { stat }) \pm 0.036(\text { syst })
$$

New Physics interpretation?

Many observables \rightarrow Global fits of the latest LHCb data
Relevant \mathcal{O} perators:

$$
\mathcal{O}_{7}, \mathcal{O}_{8}, \mathcal{O}_{9 \mu, e}^{\left({ }^{\prime}\right)}, \mathcal{O}_{10 \mu, e}^{\left({ }^{\prime}\right)} \quad \text { and } \quad \mathcal{O}_{S-P} \propto\left(\bar{s} P_{R} b\right)\left(\bar{\mu} P_{L} \mu\right) \equiv \mathcal{O}_{0}^{\prime}
$$

NP manifests itself in the shifts of the individual coefficients with respect to the SM values:

$$
C_{i}(\mu)=C_{i}^{\mathrm{SM}}(\mu)+\delta C_{i}
$$

\rightarrow Scans over the values of δC_{i}
\rightarrow Calculation of flavour observables
\rightarrow Comparison with experimental results
\rightarrow Constraints on the Wilson coefficients C_{i}
Global fits using the latest LHCb results:
M. Ciuchini, M. Fedele, E. Franco, S. Mishima, A. Paul, L. Silvestrini, M. Valli, 1512.07157
T. Hurth, FM, S. Neshatpour, 1603.00865
B. Capdevila, S. Descotes-Genon, J. Matias, J. Virto, 1605.03156

Global fits

Global fits of the observables obtained by minimisation of

$$
\chi^{2}=\left(\vec{O}^{\text {th }}-\vec{O}^{\text {exp }}\right) \cdot\left(\Sigma_{\text {th }}+\Sigma_{\text {exp }}\right)^{-1} \cdot\left(\vec{O}^{\text {th }}-\vec{O}^{\text {exp }}\right)
$$

$\left(\Sigma_{\text {th }}+\Sigma_{\text {exp }}\right)^{-1}$ is the inverse covariance matrix.
More than 100 observables relevant for leptonic and semileptonic decays:
T. Hurth, FM, S. Neshatpour, 1603.00865

- $\operatorname{BR}\left(B \rightarrow X_{s} \gamma\right)$
- $\operatorname{BR}\left(B \rightarrow X_{d} \gamma\right)$
- $\Delta_{0}\left(B \rightarrow K^{*} \gamma\right)$
- $\mathrm{BR}^{\text {low }}\left(B \rightarrow X_{s} \mu^{+} \mu^{-}\right)$
- $\mathrm{BR}^{\text {high }}\left(B \rightarrow X_{s} \mu^{+} \mu^{-}\right)$
- $\mathrm{BR}^{\text {low }}\left(B \rightarrow X_{s} e^{+} e^{-}\right)$
- $\mathrm{BR}^{\text {high }}\left(B \rightarrow X_{s} e^{+} e^{-}\right)$
- $\operatorname{BR}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$
- $\operatorname{BR}\left(B_{d} \rightarrow \mu^{+} \mu^{-}\right)$
- $\operatorname{BR}\left(B \rightarrow K^{0} \mu^{+} \mu^{-}\right)$
- $\operatorname{BR}\left(B \rightarrow K^{*+} \mu^{+} \mu^{-}\right)$
- $\operatorname{BR}\left(B \rightarrow K^{+} \mu^{+} \mu^{-}\right)$
- $\operatorname{BR}\left(B \rightarrow K^{*} e^{+} e^{-}\right)$
- R_{K}
- $B \rightarrow K^{* 0} \mu^{+} \mu^{-}: B R, F_{L}, A_{F B}, S_{3}$, $S_{4}, S_{5}, S_{7}, S_{8}, S_{9}$ in 8 low q^{2} and 4 high q^{2} bins
- $B_{s} \rightarrow \phi \mu^{+} \mu^{-}: \mathrm{BR}, F_{L}, S_{3}, S_{4}, S_{7}$ in 3 low q^{2} and 2 high q^{2} bins

Computations performed using Superlso public program

Global fits

Theoretical uncertainties and correlations (1)

- Monte Carlo analysis
- variation of the "standard" input parameters: masses, scales, CKM, ...
- decay constants taken from the latest lattice results
- use for the $B_{(s)} \rightarrow V$ form factors of the lattice+LCSR combinations from 1503.05534, including correlations (Cholesky decomposition method)
- use for the $B \rightarrow K$ form factors of the lattice+LCSR combinations from 1411.3161, including correlations
- for $B_{s} \rightarrow \phi \mu^{+} \mu^{-}$, mixing effects taken into account

Global fits

Theoretical uncertainties and correlations (2)

- Two approaches for calculation of the exclusive decays:
full form factors (7 independent FFs), soft form factors (2 independent FFs)
- full FF approach $=$ soft FF approach $+\left(1 / m_{b}, \alpha_{s}\right)$ "factorisable corrections"
- Both approaches receive contributions from non-local 4 quark operators: "non-factorisable corrections"
- However, non-factorisable corrections only known at LO in ($\left.\Lambda / m_{b}, E_{K^{*}} / m_{b}\right)$
- Higher powers of $\left(\Lambda / m_{b}, E_{K^{*}} / m_{b}\right)$ unknown $=$ "non-factorisation power corrections"
- Evaluation of uncertainties from factorisable and non-factorisable power corrections:

$$
A_{k} \rightarrow A_{k}\left(1+a_{k} \exp \left(i \phi_{k}\right)+\frac{q^{2}}{6 \mathrm{GeV}^{2}} b_{k} \exp \left(i \theta_{k}\right)\right)
$$

Soft: parametrisation of both factorisable and non-factorisable power corrections Full: parametrisation of only non-factorisable power corrections
$\left|a_{k}\right|$ between 10 to $60 \%, b_{k} \sim 2.5 a_{k}$
Low recoil: $b_{k}=0$
\Rightarrow Computation of a (theory $+\exp$) correlation matrix

Fit results for two operators

Fit results using full form factor approach:

- filled areas: 10% power correction errors
- solid line: 5\% power correction errors
- dashed line: 20\% power correction errors

Fit results for two operators

Fit results using full form factor approach:

- filled areas: 10% power correction errors
- solid line: 5\% power correction errors
- dashed line: 20\% power correction errors

Fit results for two operators

Fit results using full form factor approach:

- filled areas: 10% power correction errors
- solid line: 5\% power correction errors
- dashed line: 20% power correction errors

About 3σ deviations with the SM in all cases
Power correction uncertainty between 5 and 20% does not change the picture. Results using soft form factors are very similar

Fit results for two operators: effect of power corrections

Fits assuming different power correction uncertainties:

- 10% uncertainty (filled areas)
- 60% uncertainty (solid line)

Fit results for two operators: effect of power corrections

Fits assuming different power correction uncertainties:

- 10% uncertainty (filled areas)
- 60% uncertainty (solid line)

Fit results for two operators: effect of power corrections

Fits assuming different power correction uncertainties:

- 10% uncertainty (filled areas)
- 60% uncertainty (solid line)

Not a huge impact!
60% power correction uncertainty leads to only $17-20 \%$ error at the observable level.

Fit results for two operators: form factor dependence

Fits with different assumptions for the form factor uncertainties:

- correlations ignored (solid line)
- normal form factor errors (filled areas)
- $2 \times$ form factor errors (dashed line)
- $4 \times$ form factor errors (dotted line)

Fit results for two operators: form factor dependence

Fits with different assumptions for the form factor uncertainties:

- correlations ignored (solid line)
- normal form factor errors (filled areas)
- $2 \times$ form factor errors (dashed line)
- $4 \times$ form factor errors (dotted line)

Fit results for two operators: form factor dependence

Fits with different assumptions for the form factor uncertainties:

- correlations ignored (solid line)
- normal form factor errors (filled areas)
- $2 \times$ form factor errors (dashed line)
- $4 \times$ form factor errors (dotted line)

The size of the form factor errors has a crucial role in constraining the allowed region!

Fit results for two operators: likelihood vs. method of moments

LHCb presented the $B \rightarrow K^{*} \mu^{+} \mu^{-}$angular analysis with two different methods:

- likelihood fits: smaller uncertainties, but involves model-dependent assumptions
- method of moments: more robust, but larger uncertainties

How does the choice of method affect fits? Let's consider only $B \rightarrow K^{*} \mu^{+} \mu^{-}$ measurements.

likelihood fits: solid lines method of moments: filled areas

Fit results for two operators: likelihood vs. method of moments

LHCb presented the $B \rightarrow K^{*} \mu^{+} \mu^{-}$angular analysis with two different methods:

- likelihood fits: smaller uncertainties, but involves model-dependent assumptions
- method of moments: more robust, but larger uncertainties

How does the choice of method affect fits? Let's consider only $B \rightarrow K^{*} \mu^{+} \mu^{-}$ measurements.

likelihood fits: solid lines method of moments: filled areas

Tension decreases using the method of moments results!

Role of S_{5}

Removing S_{5} from the fit:

While the tension of C_{9}^{SM} and best fit point value of C_{9} is slightly reduced in the various two operator fits, still the tension exists at more than 2σ
$\rightarrow S_{5}$ is not the only observable which drives C_{9} to negative values!

Role of R_{K}

Removing R_{K} from the fit:

R_{K} is the main measurement resulting in the best fit values for C_{9}^{μ} and C_{9}^{e} which are in more than 2σ tension with lepton-universality

Fit results for four operators: $\left\{C_{9}^{\mu}, C_{9}^{e}, C_{10}^{\mu}, C_{10}^{e}\right\}$

No reason that only 2 Wilson coefficients receive contributions from new physics

Larger ranges are allowed for the Wilson coefficients

Considering 4 operator fits considerably relaxes the constraints on the Wilson coefficients leaving room for more diverse new physics contributions which are otherwise overlooked.

Strategies to identify the origin of the observed anomalies (1)

Unknown power corrections

- Significance of the anomalies depends on the assumptions on the power corrections
- Anomalies can be explained with $20-50 \%$ non-factorisable power corrections at the observable level in the critical bins (Ciuchini et al. 1512.07157)
- This corresponds to more than 100% error at the amplitude level (for S_{3}, S_{4} and S_{5})!
- Towards a calculations...
"Any reasonable calculation is better than a fit!" - T. Hurth
- Problem: they are not calculable in QCD factorisation
- Alternative approaches exist based on light cone sum rule techniques (Khodjamirian et al. 1006.4945)
\rightarrow the available partial calculation increases the tension in P_{5}^{\prime}

Strategies to identify the origin of the observed anomalies (2)

Cross-check with other $R_{\mu / e}$ ratios

- R_{K} is theoretically very clean compared to the angular observables
- Its tension cannot be explained by power corrections
- Both tensions could be explained by new physics in C_{9}^{μ}

Cross-checks needed with other ratios. Our predictions (within the $\left\{C_{9}^{\mu}, C_{9}^{e}\right\}$ set):

Observable	95\% C.L. prediction
$\operatorname{BR}\left(B \rightarrow X_{s} \mu^{+} \mu^{-}\right) / \mathrm{BR}\left(B \rightarrow X_{s} e^{+} e^{-}\right)_{q^{\mathbf{2}} \in\left[\mathbf{1 , 6]}(\mathrm{GeV})^{\mathbf{2}}\right.}$	[0.61, 0.93]
$\mathrm{BR}\left(B \rightarrow X_{s} \mu^{+} \mu^{-}\right) / \mathrm{BR}\left(B \rightarrow X_{s} e^{+} e^{-}\right)_{q^{\mathbf{2}}>\mathbf{1 4 . 2}(\mathrm{GeV})^{2}}$	[0.68, 1.13]
$\operatorname{BR}\left(B^{\mathbf{0}} \rightarrow K^{* \mathbf{0}} \mu^{+} \mu^{-}\right) / \operatorname{BR}\left(B^{\mathbf{0}} \rightarrow K^{* \mathbf{0}} e^{+} e^{-}\right)_{q^{\mathbf{2}} \in[\mathbf{1}, \mathbf{6}](\mathrm{GeV})^{\mathbf{2}}}$	[0.65, 0.96]
$\left\langle F_{L}\left(B^{\mathbf{0}} \rightarrow K^{* 0} \mu^{+} \mu^{-}\right)\right\rangle /\left\langle F_{L}\left(B^{\mathbf{0}} \rightarrow K^{* 0} e^{+} e^{-}\right)\right\rangle_{q^{\mathbf{2}} \in[\mathbf{1}, \mathbf{6}](\mathrm{GeV})^{\mathbf{2}}}$	[0.85, 0.96]
$\left\langle A_{F B}\left(B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}\right)\right\rangle /\left\langle A_{F B}\left(B^{0} \rightarrow K^{* 0} e^{+} e^{-}\right)\right\rangle_{q^{2} \in[4,6](\mathrm{GeV})^{2}}$	[-0.21, 0.71]
$\left\langle S_{5}\left(B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}\right)\right\rangle /\left\langle S_{\mathbf{5}}\left(B^{\mathbf{0}} \rightarrow K^{* 0} e^{+} e^{-}\right)\right\rangle_{q^{\mathbf{2}} \in\left[\mathbf{4 , 6]}(\mathrm{GeV})^{\mathbf{2}}\right.}$	[0.53, 0.92]
$\operatorname{BR}\left(B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}\right) / \operatorname{BR}\left(B^{0} \rightarrow K^{* 0} e^{+} e^{-}\right)_{q^{\mathbf{2}} \in\left[\mathbf{1 5 , 1 9]}(\mathrm{GeV})^{\mathbf{2}}\right.}$	[0.58, 0.95]
$\left\langle F_{L}\left(B^{\mathbf{0}} \rightarrow K^{* 0} \mu^{+} \mu^{-}\right)\right\rangle /\left\langle F_{L}\left(B^{0} \rightarrow K^{* 0} e^{+} e^{-}\right)\right\rangle_{q^{\mathbf{2}} \in[\mathbf{1 5}, \mathbf{1 9}](\mathrm{GeV})^{\mathbf{2}}}$	[0.998, 0.999]
$\left\langle A_{F B}\left(B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}\right)\right\rangle /\left\langle A_{F B}\left(B^{0} \rightarrow K^{* 0} e^{+} e^{-}\right)\right\rangle_{q^{\mathbf{2}} \in\left[\mathbf{1 5 , 1 9]}(\mathrm{GeV})^{\mathbf{2}}\right.}$	[0.87, 1.01]
$\left\langle S_{5}\left(B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}\right)\right\rangle /\left\langle S_{5}\left(B^{0} \rightarrow K^{* 0} e^{+} e^{-}\right)\right\rangle_{q^{\mathbf{2}} \in[\mathbf{1 5}, 19](\mathrm{GeV})^{\mathbf{2}}}$	[0.87, 1.01]
$\mathrm{BR}\left(B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}\right) / \mathrm{BR}\left(B^{+} \rightarrow K^{+} e^{+} e^{-}\right)_{q^{\mathbf{2}} \in[\mathbf{1}, \mathbf{6}](\mathrm{GeV})^{\mathbf{2}}}$	[0.58, 0.95]
$\mathrm{BR}\left(B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}\right) / \mathrm{BR}\left(B^{+} \rightarrow K^{+} e^{+} e^{-}\right)_{q^{\mathbf{2}} \in[\mathbf{1 5 , 2 2}](\mathrm{GeV})^{\mathbf{2}}}$	[0.58, 0.95]

Strategies to identify the origin of the observed anomalies (3)

Cross-check with inclusive modes
Inclusive decays are theoretically cleaner (see e.g. T. Huber, T. Hurth, E. Lunghi, JHEP 1506 (2015) 176)
At Belle-II, for inclusive $b \rightarrow s \ell \ell$:

> T. Hurth, FM, JHEP 1404 (2014) 097
> T. Hurth, FM, S. Neshatpour, JHEP 1412 (2014) 053

Predictions based on our model-independent analysis
black cross: future measurements at Belle-II assuming the best fit solution red cross: SM predictions
\rightarrow Belle-II will check the NP interpretation with theoretically clean modes

New physics scenarios

Global fits: New physics is likely to appear in C_{9} :

$$
O_{9}=\frac{e^{2}}{(4 \pi)^{2}}\left(\bar{s} \gamma^{\mu} b_{L}\right)\left(\bar{\ell} \gamma_{\mu} \ell\right)
$$

It can also affect C_{9}^{\prime} and C_{10} in a much lesser extent.

However, difficult to generate $\delta C_{9} \sim-1$ at loop level...
Need for tree level diagrams...
\rightarrow difficult in MSSM with MFV

Mainstream scenarios:

- Z^{\prime} bosons
- leptoquarks
- composite models

Z^{\prime} obvious candidate to generate the O_{9} operator
Needs:
- Flavour-changing couplings to left-handed quarks
- Vector-like couplings to leptons
- Flavour violation or non-universality in the lepton sector

Strong constraints from $B_{s}-\bar{B}_{s}$ mixing and LEP contact interactions.
Anomalies consistent with a Z^{\prime} of 1 to 10 TeV
Can appear in many models, like 331 models, gauge $L_{\mu}-L_{\tau}$ models, ...

See e.g. Altmannshofer et al. 1308.1501, Gauld et al. 1308.1959, Buras et al. 1309.2466, Gauld et al. 1310.1082, Buras et al.
1311.6729, Altmannshofer et al. 1403.1269, Buras et al. 1409.4557, Glashow et al. 1411.0565, Crivellin et al. 1501.00993, Altmannshofer et al. 1411.3161, Crivellin et al. 1503.03477, Niehoff et al. 1503.03865, Crivellin et al. 1505.02026, Celis et al. $1505.03079, \ldots$

- t-channel diagrams
- Different possible representations, can be scalar (spin 0) or vector (spin 1)
- Cannot alter only C_{9}, but both C_{9} and $C_{10}\left(=-C_{9}\right)$
- Cannot be lepton flavour universal and conserve lepton number simultaneously Model can be tested with $R_{K^{(*)}}$ measurements and searches for $b \rightarrow s \mu^{ \pm} e^{\mp}$ and $\mu \rightarrow e \gamma$ Possible scenario: two leptoquarks coupling to one lepton type only.

Composite models

- Neutral resonance ρ_{μ} coupling to the muons via composite elementary mixing
- requires some compositeness for the muons
- can allow for lepton flavour violating couplings
- constrained by the LEP Z-width measurements and $B_{s}-\bar{B}_{s}$ mixing

In addition, such models may explain the excesses observed in $W W, W Z, W h$ and $\ell^{+} \ell^{-}$ resonance searches by ATLAS and CMS

Conclusion

- Latest LHCb results, based on the $3 \mathrm{fb}^{-1}$ data set still show some tensions with the SM predictions
- Model independent fits point to $C_{9}^{N P} \sim-1$, and new physics in muonic C_{9}^{μ} is preferred
- In two operator fits there is more than 2σ tension for $\delta C_{9}^{e}=\delta C_{9}^{\mu}$
- The fit results do not depend very much on whether one uses soft or full form factor approach
- Factorisable power corrections have small effects at observable level
- The cross check with other not-yet-measured ratios (e.g. $R_{K^{*}}$) and the inclusive measurements would be of importance to identify the origin of the anomalies

Conclusion

- Latest LHCb results, based on the $3 \mathrm{fb}^{-1}$ data set still show some tensions with the SM predictions
- Model independent fits point to $C_{9}^{N P} \sim-1$, and new physics in muonic C_{9}^{μ} is preferred
- In two operator fits there is more than 2σ tension for $\delta C_{9}^{e}=\delta C_{9}^{\mu}$
- The fit results do not depend very much on whether one uses soft or full form factor approach
- Factorisable power corrections have small effects at observable level
- The cross check with other not-yet-measured ratios (e.g. $R_{K^{*}}$) and the inclusive measurements would be of importance to identify the origin of the anomalies

With the 750 GeV being gone, these are at the moment the only significant tensions with the SM at the LHC, so stay tuned!

Backup

Backup

Global fit results assuming new physics in one operator only

	b.f. value	$\chi_{\min }^{2}$	Pull $_{\text {SM }}$	68% C.L.	95\% C.L.
$\delta C_{9} / C_{9}^{\text {SM }}$	-0.18	123.8	3.0σ	$[-0.25,-0.09]$	$[-0.30,-0.03]$
$\delta C_{9}^{\prime} / C_{9}^{\text {SM }}$	+0.03	131.9	1.0σ	$[-0.05,+0.12]$	$[-0.11,+0.18]$
$\delta C_{10} / C_{10}^{S M}$	-0.12	129.2	1.9σ	$[-0.23,-0.02]$	$[-0.31,+0.04]$
$\delta C_{9}^{\mu} / C_{9}^{S M}$	-0.21	115.5	4.2σ	$[-0.27,-0.13]$	$[-0.32,-0.08]$
$\delta C_{9}^{e} / C_{9}^{\text {SM }}$	+0.25	124.3	2.9σ	$[+0.11,+0.36]$	$[+0.03,+0.46]$

Fit results for four operators: $\left\{C_{9}^{\mu}, C_{9}^{\prime \mu}, C_{9}^{e}, C_{9}{ }^{\prime}\right\}$

No reason that only 2 Wilson coefficients receive contributions from new physics

Larger ranges are allowed for the Wilson coefficients

Fit results for four operators: $\left\{C_{9}, C_{9}^{\prime}, C_{10}, C_{10}^{\prime}\right\}$

No reason that only 2 Wilson coefficients receive contributions from new physics

Larger ranges are allowed for the Wilson coefficients

