Recent anomalies in flavour physics

Nazila Mahmoudi

Lyon University & CERN

LIO international conference on Composite Models, Electroweak Physics and the LHC

IPNL, Lyon 5-8 septembre 2016

Introduction	Anomalies	Implications	NP scenarios	Conclusion
●000000				
Outline				

Introduction

 \rightarrow Theoretical framework

Observables

 \rightarrow Recent anomalies

Implications

- \rightarrow Model independent global fits
- \rightarrow Implications for Wilson coefficients
- \rightarrow Assessment of the theoretical uncertainties
- \rightarrow Identifying the origin of the anomalies
- \rightarrow Model dependent interpretations

Conclusions

Introduction	Anomalies	Implications	NP scenarios	Conclusion
000000				
Indirect search for	New Physics			

• In the past, the objective of flavour physics experiments was focused on the tests of the Standard Model and the CKM paradigm \rightarrow This is now well established!

• Focus is now towards the new physics! And search for the **indirect signs of new physics**

 LHCb has a very rich program to search for indirect signs of new physics! Main probes: Rare decays

Introduction	Anomalies	Implications	NP scenarios	Conclusion
000000				
Indirect search for	New Physics			

 In the past, the objective of flavour physics experiments was focused on the tests of the Standard Model and the CKM paradigm
 → This is now well established!

• Focus is now towards the new physics!

And search for the indirect signs of new physics

• LHCb has a very rich program to search for indirect signs of new physics! Main probes: Rare decays

Introduction	Anomalies	Implications	NP scenarios	Conclusion
000000				
Indirect search for	New Physics			

 In the past, the objective of flavour physics experiments was focused on the tests of the Standard Model and the CKM paradigm
 → This is now well established!

 \rightarrow This is now well established!

• Focus is now towards the new physics! And search for the **indirect signs of new physics**

 LHCb has a very rich program to search for indirect signs of new physics! Main probes: Rare decays

Introduction	Anomalies	Implications	NP scenarios	Conclusion
000000				
Indirect search for	New Physics			

• In the past, the objective of flavour physics experiments was focused on the tests of the Standard Model and the CKM paradigm \rightarrow This is now well established!

• Focus is now towards the new physics! And search for the indirect signs of new physics

Eratosthenes discovered the roundness of the Earth... about 2300 years before its direct observation!

Introduction	Anomalies	Implications	NP scenarios	Conclusion
000000				
Indirect search for	New Physics			

 In the past, the objective of flavour physics experiments was focused on the tests of the Standard Model and the CKM paradigm
 This is now well established!

 \rightarrow This is now well established!

• Focus is now towards the new physics! And search for the **indirect signs of new physics**

Eratosthenes discovered the roundness of the Earth... about 2300 years before its direct observation!

• LHCb has a very rich program to search for indirect signs of new physics! Main probes: Rare decays

Introduction	Anomalies 000000	Implications 0000000000000	NP scenarios 0000	Conclusion O
Why rare	e decays are interesting?			
	 Rare B decays occur 	at loop level		
	\rightarrow The SM contribu	tions are very small and	the NP contribution	

 \rightarrow The SM contributions are very small and the NP contributions can have a comparable magnitude.

• The theory ingredients are known at a very good accuracy!

In particular: QCD corrections are known with a good precision!

Very promising experimental situation

ightarrow Branching ratios and distributions can be measured precisely

Introduction	Anomalies	Implications	NP scenarios	Conclusion
000000				
Why rare decays	are interesting	?		

• Rare B decays occur at loop level

 \rightarrow The SM contributions are very small and the NP contributions can have a comparable magnitude.

• The theory ingredients are known at a very good accuracy!

In particular: QCD corrections are known with a good precision!

Very promising experimental situation

ightarrow Branching ratios and distributions can be measured precisely

Introduction	Anomalies	Implications	NP scenarios	Conclusion
000000				
Why rare dec	ays are interesting	?		

• Rare B decays occur at loop level

 \rightarrow The SM contributions are very small and the NP contributions can have a comparable magnitude.

• The theory ingredients are known at a very good accuracy!

In particular: QCD corrections are known with a good precision!

- Very promising experimental situation
 - ightarrow Branching ratios and distributions can be measured precisely

Introduction	Anomalies	Implications	NP scenarios	Conclusion
000000				
Why rare dec	ays are interesting	?		

• Rare B decays occur at loop level

 \rightarrow The SM contributions are very small and the NP contributions can have a comparable magnitude.

• The theory ingredients are known at a very good accuracy!

In particular: QCD corrections are known with a good precision!

• Very promising experimental situation

ightarrow Branching ratios and distributions can be measured precisely

Introduction	Anomalies	Implications	NP scenarios	Conclusion
000000				
Theoretical fram	iework			

A multi-scale problem

- \bullet new physics: $1/\Lambda_{\rm NP}$
- electroweak interactions: $1/M_W$
- hadronic effects: $1/m_b$
- \bullet QCD interactions: $1/\Lambda_{\rm QCD}$

 \Rightarrow Effective field theory approach:

separation between low and high energies using Operator Product Expansion

• short distance: Wilson coefficients, computed perturbatively

Iong distance: local operators

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \left(\sum_{i=1\cdots 10, S, P} \left(C_i(\mu) \mathcal{O}_i(\mu) + C'_i(\mu) \mathcal{O}'_i(\mu) \right) \right)$$

New physics:

- Corrections to the Wilson coefficients: $C_i \rightarrow C_i + \Delta C_i^{NF}$
- Additional operators: $\sum C_i^{\Lambda}$

Introduction	Anomalies	Implications	NP scenarios	Conclusion
0000000				
Theoretical fran	nework			

A multi-scale problem

- \bullet new physics: $1/\Lambda_{\rm NP}$
- electroweak interactions: $1/M_W$
- hadronic effects: $1/m_b$
- \bullet QCD interactions: $1/\Lambda_{\rm QCD}$

 \Rightarrow Effective field theory approach:

separation between low and high energies using Operator Product Expansion

- short distance: Wilson coefficients, computed perturbatively
- long distance: local operators

$$\mathcal{H}_{ ext{eff}} = -rac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \Big(\sum_{i=1\cdots 10,S,P} ig(C_i(\mu) \mathcal{O}_i(\mu) + C_i'(\mu) \mathcal{O}_i'(\mu) ig) \Big)$$

New physics:

- Corrections to the Wilson coefficients: $C_i \rightarrow C_i + \Delta C_i^{NF}$
- Additional operators: $\sum C_i$

Introduction	Anomalies	Implications	NP scenarios	Conclusion
0000000				
Theoretical fran	nework			

A multi-scale problem

- \bullet new physics: $1/\Lambda_{\rm NP}$
- electroweak interactions: $1/M_W$
- hadronic effects: $1/m_b$
- \bullet QCD interactions: $1/\Lambda_{\rm QCD}$

 \Rightarrow Effective field theory approach:

separation between low and high energies using Operator Product Expansion

- short distance: Wilson coefficients, computed perturbatively
- long distance: local operators

$$\mathcal{H}_{ ext{eff}} = -rac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \Big(\sum_{i=1\cdots 10,S,P} ig(C_i(\mu) \mathcal{O}_i(\mu) + C_i'(\mu) \mathcal{O}_i'(\mu) ig) \Big)$$

New physics:

- Corrections to the Wilson coefficients: $C_i \rightarrow C_i + \Delta C_i^{NP}$
- Additional operators: $\sum C_j^{NP} \mathcal{O}_j^{NP}$

Introduction 0000●00	Anomalies 000000	Implications	NP scenarios	Conclusion O
\mathcal{O} perators				
	$ar{s} \gamma_\mu T^a P_L c) (ar{c} \gamma^\mu T^a P_L b) \ ar{s} \gamma_\mu P_L c) (ar{c} \gamma^\mu P_L b)$)	u b u g d d u d d Current	b N u
$\mathcal{O}_4 = (\mathcal{O}_5 = (\mathcal{O}_5 = \mathcal{O}_5))$	$ \bar{s}\gamma_{\mu}P_{L}b)\sum_{q}(\bar{q}\gamma^{\mu}q) \\ \bar{s}\gamma_{\mu}T^{a}P_{L}b)\sum_{q}(\bar{q}\gamma^{\mu}T^{a}) \\ \bar{s}\gamma_{\mu_{1}}\gamma_{\mu_{2}}\gamma_{\mu_{3}}P_{L}b)\sum_{q}(\bar{q}) \\ \bar{s}\gamma_{\mu_{1}}\gamma_{\mu_{2}}\gamma_{\mu_{3}}T^{a}P_{L}b)\sum_{q}(\bar{q}) $	$\gamma^{\mu_1}\gamma^{\mu_2}\gamma^{\mu_3}q)$	$d \qquad b \qquad d \qquad d$	d w w y,z q q q
	$\frac{\frac{e}{6\pi^2}}{\frac{g}{6\pi^2}} \left[\bar{s} \sigma^{\mu\nu} (m_s P_L + m_b h_s) \right]$		b t s g g y Magnetic operators	
	$\frac{e^2}{(4\pi)^2} (\bar{s}\gamma^{\mu}b_L)(\bar{l}\gamma_{\mu}l) \\ \frac{e^2}{(4\pi)^2} (\bar{s}\gamma^{\mu}b_L)(\bar{l}\gamma_{\mu}\gamma_5l)$		$\frac{d}{t} \xrightarrow{b}_{t} \frac{b}{t}$	

Introduction	Anomalies	Implications	NP scenarios	Conclusion
0000000				
Wilson coefficient	s			

Two main steps:

• Calculating $C_i^{eff}(\mu)$ at scale $\mu \sim M_W$ by requiring matching between the effective and full theories

$$C_i^{ ext{eff}}(\mu) = C_i^{(0) ext{eff}}(\mu) + rac{lpha_s(\mu)}{4\pi}C_i^{(1) ext{eff}}(\mu) + \cdots$$

• Evolving the $C_i^{eff}(\mu)$ to scale $\mu \sim m_b$ using the RGE:

$$\mu rac{d}{d\mu} C^{ extsf{eff}}_i(\mu) = C^{ extsf{eff}}_j(\mu) \gamma^{ extsf{eff}}_{ji}(\mu)$$

driven by the anomalous dimension matrix $\hat{\gamma}^{\rm eff}(\mu)$:

$$\hat{\gamma}^{eff}(\mu) = rac{lpha_{\mathfrak{s}}(\mu)}{4\pi} \hat{\gamma}^{(0)eff} + rac{lpha_{\mathfrak{s}}^2(\mu)}{(4\pi)^2} \hat{\gamma}^{(1)eff} + \cdots$$

Introduction	Anomalies	Implications	NP scenarios	Conclusion
000000				
Hadronic quantiti	es			

To compute the amplitudes:

$$\mathcal{A}(A o B) = \langle B | \mathcal{H}_{ ext{eff}} | A
angle = rac{G_F}{\sqrt{2}} \sum_i \lambda_i C_i(\mu) \langle B | \mathcal{O}_i | A
angle(\mu)$$

 $\langle B|\mathcal{O}_i|A\rangle$: hadronic matrix element

How to compute matrix elements?

 \rightarrow Model building, Lattice simulations, Light flavour symmetries, Heavy flavour symmetries, ...

ightarrow Describe hadronic matrix elements in terms of hadronic quantities

Two types of hadronic quantities:

- Decay constants: Probability amplitude of hadronising quark pair into a given hadron
- Form factors: Transition from a meson to another through flavour change

Introduction	Anomalies	Implications	NP scenarios	Conclusion
	00000			
LHCb measur	ements			

Impressive effort in studying exclusive $b \rightarrow s\ell\ell$ transitions at LHCb with the measurements of a large number of independent angular observables!

 $B \rightarrow K \mu^+ \mu^-$, $B \rightarrow K^+ e^+ e^-$, $B \rightarrow K^* \mu^+ \mu^-$ (F_L , A_{FB} , S_i , P_i), $B_s \rightarrow \phi \mu^+ \mu^-$, ...

Deviations from the SM predictions in $B \to K^* \mu^+ \mu^-$, $B_s \to \phi \mu^+ \mu^-$ and R_K : "anomalies"

Differential decay distribution:

$$\frac{d^4\Gamma}{dq^2\,d\cos\theta_\ell\,d\cos\theta_{K^*}\,d\phi} = \frac{9}{32\pi}J(q^2,\theta_\ell,\theta_{K^*},\phi)$$

$$J(q^2, heta_\ell, heta_{K^*}, \phi) = \sum_i J_i(q^2) f_i(heta_\ell, heta_{K^*}, \phi)$$

 $^{\succ}$ angular coefficients J_{1-9}

ightarrow functions of the spin amplitudes A_0 , A_{\parallel} , A_{\perp} , A_t , and A_s

Spin amplitudes: functions of Wilson coefficients and form factors

Main operators:

$$\begin{aligned} \mathcal{O}_9 &= \frac{e^2}{(4\pi)^2} (\bar{s}\gamma^{\mu} b_L) (\bar{\ell}\gamma_{\mu}\ell), \quad \mathcal{O}_{10} &= \frac{e^2}{(4\pi)^2} (\bar{s}\gamma^{\mu} b_L) (\bar{\ell}\gamma_{\mu}\gamma_5\ell) \\ \mathcal{O}_S &= \frac{e^2}{16\pi^2} (\bar{s}_L^{\alpha} b_R^{\alpha}) (\bar{\ell}\ell), \qquad \mathcal{O}_P &= \frac{e^2}{16\pi^2} (\bar{s}_L^{\alpha} b_R^{\alpha}) (\bar{\ell}\gamma_5\ell) \end{aligned}$$

F. Kruger et al., Phys. Rev. D 61 (2000) 114028;

W. Altmannshofer et al., JHEP 0901 (2009) 019; U. Egede et al., JHEP 1010 (2010) 056

 q^2 (dilepton invariant mass squared), θ_{ℓ} , θ_{K^*} , ϕ

Differential decay distribution:

$$\frac{d^4\Gamma}{dq^2\,d\cos\theta_\ell\,d\cos\theta_{K^*}\,d\phi}=\frac{9}{32\pi}J(q^2,\theta_\ell,\theta_{K^*},\phi)$$

$$J(q^2,\theta_\ell,\theta_{K^*},\phi) = \sum_i J_i(q^2) f_i(\theta_\ell,\theta_{K^*},\phi)$$

 $^{\searrow}$ angular coefficients J_{1-9}

 \searrow functions of the spin amplitudes A_0 , A_{\parallel} , A_{\perp} , A_t , and A_s

Spin amplitudes: functions of Wilson coefficients and form factors

Main operators:

$$\begin{aligned} \mathcal{O}_9 &= \frac{e^2}{(4\pi)^2} (\bar{s}\gamma^{\mu} b_L) (\bar{\ell}\gamma_{\mu}\ell), \quad \mathcal{O}_{10} &= \frac{e^2}{(4\pi)^2} (\bar{s}\gamma^{\mu} b_L) (\bar{\ell}\gamma_{\mu}\gamma_5\ell) \\ \mathcal{O}_5 &= \frac{e^2}{16\pi^2} (\bar{s}_L^{\alpha} b_R^{\alpha}) (\bar{\ell}\ell), \qquad \mathcal{O}_P &= \frac{e^2}{16\pi^2} (\bar{s}_L^{\alpha} b_R^{\alpha}) (\bar{\ell}\gamma_5\ell) \end{aligned}$$

F. Kruger et al., Phys. Rev. D 61 (2000) 114028;

W. Altmannshofer et al., JHEP 0901 (2009) 019; U. Egede et al., JHEP 1010 (2010) 056

Nazila Mahmoudi

Introduction	Anomalies	Implications	NP scenarios	Conclusion
	00000			
$B o K^* \mu^+ \mu^-$	observables			

Optimised observables: form factor uncertainties cancel at leading order

$$\langle P_1 \rangle_{\text{bin}} = \frac{1}{2} \frac{\int_{\text{bin}} dq^2 [J_3 + \bar{J}_3]}{\int_{\text{bin}} dq^2 [J_{2s} + \bar{J}_{2s}]} \qquad \langle P_2 \rangle_{\text{bin}} = \frac{1}{8} \frac{\int_{\text{bin}} dq^2 [J_{6s} + \bar{J}_{6s}]}{\int_{\text{bin}} dq^2 [J_{2s} + \bar{J}_{2s}]} \\ \langle P'_4 \rangle_{\text{bin}} = \frac{1}{N'_{\text{bin}}} \int_{\text{bin}} dq^2 [J_4 + \bar{J}_4] \qquad \langle P'_5 \rangle_{\text{bin}} = \frac{1}{2N'_{\text{bin}}} \int_{\text{bin}} dq^2 [J_5 + \bar{J}_5] \\ \langle P'_6 \rangle_{\text{bin}} = \frac{-1}{2N'_{\text{bin}}} \int_{\text{bin}} dq^2 [J_7 + \bar{J}_7] \qquad \langle P'_8 \rangle_{\text{bin}} = \frac{-1}{N'_{\text{bin}}} \int_{\text{bin}} dq^2 [J_8 + \bar{J}_8]$$

with

$$\mathcal{N}_{
m bin}' = \sqrt{-\int_{
m bin} dq^2 [J_{2s} + \bar{J}_{2s}] \int_{
m bin} dq^2 [J_{2c} + \bar{J}_{2c}]}$$

+ CP violating clean observables and other combinations

U. Egede et al., JHEP 0811 (2008) 032, JHEP 1010 (2010) 056 J. Matias et al., JHEP 1204 (2012) 104

S. Descotes-Genon et al., JHEP 1305 (2013) 137

Or alternatively:

$$S_i = rac{J_{i(s,c)} + ar{J}_{i(s,c)}}{rac{d\Gamma}{dq^2} + rac{dar{\Gamma}}{dq^2}} \;, \qquad \qquad P'_{4,5,8} = rac{S_{4,5,8}}{\sqrt{F_L(1-F_L)}}$$

Introduction	Anomalies	Implications	NP scenarios	Conclusion
	000000			
The LHCb anom	alies (1)			

- $B
 ightarrow {\cal K}^* \mu^+ \mu^-$ angular observables, in particular $P_5' \,/\, S_5$
 - 2013 (1 fb⁻¹): disagreement with the SM for P_2 and P'_5 (PRL 111, 191801 (2013))
 - March 2015 (3 fb⁻¹): confirmation of the deviations (LHCb-CONF-2015-002)
 Dec. 2015: 2 analysis methods, both show the deviations (JHEP 1602, 104 (2016))

 3.7σ deviation in the 3rd bin

Introduction	Anomalies	Implications	NP scenarios	Conclusion
	000000			
The LHCb and	omalies (1)			

$B ightarrow K^* \mu^+ \mu^-$ angular observables, in particular $P_5' \,/\, S_5$

- 2013 (1 fb⁻¹): disagreement with the SM for P_2 and P'_5 (PRL 111, 191801 (2013))
- March 2015 (3 fb⁻¹): confirmation of the deviations (LHCb-CONF-2015-002)

Dec. 2015: 2 analysis methods, both show the deviations (JHEP 1602, 104 (2016))

Introduction	Anomalies	Implications	NP scenarios	Conclusion
	000000			
The LHCb and	omalies (1)			

 $B
ightarrow K^* \mu^+ \mu^-$ angular observables, in particular $P_5' \,/\, S_5$

- 2013 (1 fb⁻¹): disagreement with the SM for P_2 and P'_5 (PRL 111, 191801 (2013))
- March 2015 (3 fb⁻¹): confirmation of the deviations (LHCb-CONF-2015-002)
- Dec. 2015: 2 analysis methods, both show the deviations (JHEP 1602, 104 (2016))

3.4 σ combined fit (likelihood)

Introduction	Anomalies	Implications	NP scenarios	Conclusion
	000000			
The LHCb and	omalies (1)			

 $B
ightarrow K^* \mu^+ \mu^-$ angular observables, in particular $P_5' \,/\, S_5$

- 2013 (1 fb⁻¹): disagreement with the SM for P_2 and P'_5 (PRL 111, 191801 (2013))
- March 2015 (3 fb⁻¹): confirmation of the deviations (LHCb-CONF-2015-002)
 - Dec. 2015: 2 analysis methods, both show the deviations (JHEP 1602, 104 (2016))

Nazila Mahmoudi

Introduction	Anomalies	Implications	NP scenarios	Conclusion
	000000			
The LHCb anon	nalies (2)			

$B_s \rightarrow \phi \mu^+ \mu^-$ branching fraction

- Same theoretical description as $B o K^* \mu^+ \mu^-$
- June 2015 (3 fb⁻¹): the differential branching fraction is found to be 3.2σ below the SM predictions in the [1-6] GeV² bin

JHEP 1509 (2015) 179

Introduction	Anomalies	Implications	NP scenarios	Conclusion
	000000			
The LHCb anom	alies (3)			

Lepton universality in $B^+ \to K^+ \ell^+ \ell^-$

• June 2015 (3 fb⁻¹): measurement of R_K in the [1-6] GeV² bin 2.6 σ tension in [1-6] GeV² bin

PRL 113, 151601 (2014)

$$R_{\kappa} = BR(B^+ \to \kappa^+ \mu^+ \mu^-)/BR(B^+ \to \kappa^+ e^+ e^-)$$

 $R_{\kappa}^{SM} \approx 1$

Introduction	Anomalies	Implications	NP scenarios	Conclusion
		•000000000000		
New Physics inte	rpretation?			

Many observables \rightarrow Global fits of the latest LHCb data

Relevant Operators:

 $\mathcal{O}_7, \mathcal{O}_8, \mathcal{O}_{9\mu,e}^{(')}, \mathcal{O}_{10\mu,e}^{(')}$ and $\mathcal{O}_{S-P} \propto (\bar{s}P_R b)(\bar{\mu}P_L \mu) \equiv \mathcal{O}_0^{\prime}$

 NP manifests itself in the shifts of the individual coefficients with respect to the SM values:

$$C_i(\mu) = C_i^{\rm SM}(\mu) + \delta C_i$$

- \rightarrow Scans over the values of δC_i
- \rightarrow Calculation of flavour observables
- \rightarrow Comparison with experimental results
- \rightarrow Constraints on the Wilson coefficients C_i

Global fits using the latest LHCb results:

M. Ciuchini, M. Fedele, E. Franco, S. Mishima, A. Paul, L. Silvestrini, M. Valli, 1512.07157 T. Hurth, FM, S. Neshatpour, 1603.00865 B. Capdevila, S. Descotes-Genon, J. Matias, J. Virto, 1605.03156

Introduction	Anomalies	Implications	NP scenarios	Conclusion
		0000000000000		
Global fits				

Global fits of the observables obtained by minimisation of

$$\chi^{2} = (\vec{O}^{th} - \vec{O}^{exp}) \cdot (\Sigma_{th} + \Sigma_{exp})^{-1} \cdot (\vec{O}^{th} - \vec{O}^{exp})$$
$$(\Sigma_{th} + \Sigma_{exp})^{-1} \text{ is the inverse covariance matrix.}$$

More than 100 observables relevant for leptonic and semileptonic decays:

T. Hurth, FM, S. Neshatpour, 1603.00865

- BR($B \rightarrow X_s \gamma$)
- BR($B \rightarrow X_d \gamma$)
- $\Delta_0(B \to K^*\gamma)$
- $\mathsf{BR}^{\mathsf{low}}(B \to X_{\mathfrak{s}} \mu^+ \mu^-)$
- $\mathsf{BR}^{\mathsf{high}}(B \to X_{s} \mu^{+} \mu^{-})$
- $\mathsf{BR}^{\mathsf{low}}(B \to X_s e^+ e^-)$
- $\mathsf{BR}^{\mathsf{high}}(B \to X_s e^+ e^-)$
- BR($B_s \rightarrow \mu^+ \mu^-$)
- BR($B_d \rightarrow \mu^+ \mu^-$)

- BR($B \rightarrow K^0 \mu^+ \mu^-$)
- BR($B \rightarrow K^{*+} \mu^+ \mu^-$)
- BR($B \rightarrow K^+ \mu^+ \mu^-$)
- BR($B \rightarrow K^* e^+ e^-$)
- *R*_K
- $B \to K^{*0} \mu^+ \mu^-$: *BR*, *F_L*, *A_{FB}*, *S*₃, *S*₄, *S*₅, *S*₇, *S*₈, *S*₉ in 8 low *q*² and 4 high *q*²bins
- $B_s \rightarrow \phi \mu^+ \mu^-$: BR, F_L , , S_3 , S_4 , S_7 in 3 low q^2 and 2 high q^2 bins

Computations performed using SuperIso public program

Introduction	Anomalies	Implications	NP scenarios	Conclusion
		000000000000		
Global fits				

Theoretical uncertainties and correlations (1)

- Monte Carlo analysis
- variation of the "standard" input parameters: masses, scales, CKM, ...
- decay constants taken from the latest lattice results
- use for the $B_{(s)} \rightarrow V$ form factors of the lattice+LCSR combinations from 1503.05534, including correlations (Cholesky decomposition method)
- use for the $B \to K$ form factors of the lattice+LCSR combinations from 1411.3161, including correlations
- for $B_s \to \phi \mu^+ \mu^-$, mixing effects taken into account

Introduction	Anomalies	Implications	NP scenarios	Conclusion
		000000000000000		
Global fits				

Theoretical uncertainties and correlations (2)

- Two approaches for calculation of the exclusive decays: full form factors (7 independent FFs), soft form factors (2 independent FFs)
- full FF approach = soft FF approach + $(1/m_b, \alpha_s)$ "factorisable corrections"
- Both approaches receive contributions from non-local 4 quark operators: "non-factorisable corrections"
- However, non-factorisable corrections only known at LO in $(\Lambda/m_b, E_{K^*}/m_b)$
- Higher powers of $(\Lambda/m_b, E_{K^*}/m_b)$ unknown = "non-factorisation power corrections"
- Evaluation of uncertainties from factorisable and non-factorisable power corrections:

$$A_k
ightarrow A_k \left(1 + a_k \exp(i\phi_k) + rac{q^2}{6 \ {
m GeV}^2} b_k \exp(i\theta_k)
ight)$$

Soft: parametrisation of both factorisable and non-factorisable power corrections Full: parametrisation of only non-factorisable power corrections

 $|a_k|$ between 10 to 60%, $b_k \sim 2.5 a_k$ Low recoil: $b_k = 0$

 \Rightarrow Computation of a (theory + exp) correlation matrix

Introduction	Anomalies	Implications	NP scenarios	Conclusion
		000000000000		
Fit results for two	operators			

Fit results using full form factor approach:

- filled areas: 10% power correction errors
- solid line: 5% power correction errors
- dashed line: 20% power correction errors

Introduction	Anomalies	Implications	NP scenarios	Conclusion		
		0000000000000000				
Fit results for two operators						

Fit results using full form factor approach:

- filled areas: 10% power correction errors
- solid line: 5% power correction errors
- dashed line: 20% power correction errors

Introduction	Anomalies	Implications	NP scenarios	Conclusion
		000000000000000		
Fit results for tw	o operators			

Fit results using full form factor approach:

- filled areas: 10% power correction errors
- solid line: 5% power correction errors
- dashed line: 20% power correction errors

About 3σ deviations with the SM in all cases

Power correction uncertainty between 5 and 20% does not change the picture. Results using soft form factors are very similar

Nazila Mahmoudi

Introduction	Anomalies	Implications	NP scenarios	Conclusion
		0000000000000		
Fit results for two	operators: effect	of power corrections		

Fits assuming different power correction uncertainties:

- 10% uncertainty (filled areas)
- 60% uncertainty (solid line)

$$(C_9^e - C_9^\mu)$$

Fits assuming different power correction uncertainties:

- 10% uncertainty (filled areas)
- 60% uncertainty (solid line)

Introduction	Anomalies	Implications	NP scenarios	Conclusion
		0000000000000		
Fit results for two	operators: effect	of power corrections		

Fits assuming different power correction uncertainties:

- 10% uncertainty (filled areas)
- 60% uncertainty (solid line)

Not a huge impact!

60% power correction uncertainty leads to only 17-20% error at the observable level.

Introduction 0000000	Anomalies 000000	Implications 0000000000000	NP scenarios	Conclusion O
Fit results for	two operators: fo	rm factor dependence		

Fits with different assumptions for the form factor uncertainties:

- correlations ignored (solid line)
- normal form factor errors (filled areas)
- $\bullet~2~\times$ form factor errors (dashed line)
- 4 \times form factor errors (dotted line)

Introduction	Anomalies	Implications	NP scenarios	Conclusion
		00000000000000		
Fit results for	two operators: fo	rm factor dependence		

Fits with different assumptions for the form factor uncertainties:

- correlations ignored (solid line)
- normal form factor errors (filled areas)
- $2 \times$ form factor errors (dashed line)
- 4 \times form factor errors (dotted line)

Introduction	Anomalies	Implications	NP scenarios	Conclusion
		0000000000000		
Fit results for t	wo operators: fo	rm factor dependence		

Fits with different assumptions for the form factor uncertainties:

- correlations ignored (solid line)
- normal form factor errors (filled areas)
- $2 \times$ form factor errors (dashed line)
- 4 \times form factor errors (dotted line)

The size of the form factor errors has a crucial role in constraining the allowed region!

LHCb presented the $B \to K^* \mu^+ \mu^-$ angular analysis with two different methods:

- likelihood fits: smaller uncertainties, but involves model-dependent assumptions
- method of moments: more robust, but larger uncertainties

How does the choice of method affect fits? Let's consider only $B\to K^*\mu^+\mu^-$ measurements.

likelihood fits: solid lines method of moments: filled areas

LHCb presented the $B \to K^* \mu^+ \mu^-$ angular analysis with two different methods:

- likelihood fits: smaller uncertainties, but involves model-dependent assumptions
- method of moments: more robust, but larger uncertainties

How does the choice of method affect fits? Let's consider only $B\to K^*\mu^+\mu^-$ measurements.

likelihood fits: solid lines method of moments: filled areas

Tension decreases using the method of moments results!

Introduction	Anomalies	Implications	NP scenarios	Conclusion
		0000000000000		
Role of S_5				

Removing S_5 from the fit:

While the tension of $C_9^{\rm SM}$ and best fit point value of C_9 is slightly reduced in the various two operator fits, still the tension exists at more than 2σ

 \rightarrow S5 is not the only observable which drives C9 to negative values!

Nazila Mahmoudi

LIO2016 - 7 Sep. 2016

Introduction	Anomalies	Implications	NP scenarios	Conclusion
		00000000000000		
Role of R_K				

Removing R_K from the fit:

 R_{κ} is the main measurement resulting in the best fit values for C_9^{μ} and C_9^{e} which are in more than 2σ tension with lepton-universality

Nazila Mahmoudi

LIO2016 - 7 Sep. 2016

No reason that only 2 Wilson coefficients receive contributions from new physics

Larger ranges are allowed for the Wilson coefficients

Considering 4 operator fits considerably relaxes the constraints on the Wilson coefficients leaving room for more diverse new physics contributions which are otherwise overlooked.

Unknown power corrections

- Significance of the anomalies depends on the assumptions on the power corrections
- Anomalies can be explained with 20-50% non-factorisable power corrections at the observable level in the critical bins (Ciuchini et al. 1512.07157)
- This corresponds to more than 100% error at the amplitude level (for S_3 , S_4 and S_5)!
- Towards a calculations...

"Any reasonable calculation is better than a fit!" - T. Hurth

- Problem: they are not calculable in QCD factorisation
- Alternative approaches exist based on light cone sum rule techniques (Khodjamirian et al. 1006.4945)

 \rightarrow the available partial calculation increases the tension in P_5^\prime

Cross-check with other $R_{\mu/e}$ ratios

- R_K is theoretically very clean compared to the angular observables
- Its tension cannot be explained by power corrections
- Both tensions could be explained by new physics in C_9^{μ}

Cross-checks needed with other ratios. Our predictions (within the $\{C_9^{\mu}, C_9^{e}\}$ set):

Observable	95% C.L. prediction
$\overline{\mathrm{BR}(B \to X_{s} \mu^{+} \mu^{-})/\mathrm{BR}(B \to X_{s} e^{+} e^{-})_{q^{2} \in [1, 6](\mathrm{GeV})^{2}}}$	[0.61, 0.93]
$\mathrm{BR}(B ightarrow X_{s} \mu^{+} \mu^{-}) / \mathrm{BR}(B ightarrow X_{s} \mathrm{e}^{+} \mathrm{e}^{-})_{q^{2} > 14.2 (\mathrm{GeV})^{2}}$	[0.68, 1.13]
$\mathrm{BR}(B^{\boldsymbol{0}} \to \mathcal{K}^{*\boldsymbol{0}} \mu^+ \mu^-) / \ \mathrm{BR}(B^{\boldsymbol{0}} \to \mathcal{K}^{*\boldsymbol{0}} e^+ e^-)_{q^{\boldsymbol{2}} \in [1, 6](\mathrm{GeV})^{\boldsymbol{2}}}$	[0.65, 0.96]
$\langle F_L(B^{0} o K^{*0} \mu^+ \mu^-) angle / \langle F_L(B^{0} o K^{*0} e^+ e^-) angle_{q^{2} \in [1, 6](GeV)^{2}}$	[0.85, 0.96]
$\langle A_{F\!B}(B^{0} o K^{*0} \mu^+ \mu^-) angle / \langle A_{F\!B}(B^{0} o K^{*0} e^+ e^-) angle_{q^{2} \in [4, 6](\mathrm{GeV})^{2}}$	[-0.21, 0.71]
$\langle S_5(B^0 o K^{*0} \mu^+ \mu^-) angle / \langle S_5(B^0 o K^{*0} e^+ e^-) angle_{q^2 \in [4,6](GeV)^2}$	[0.53, 0.92]
$\mathrm{BR}(B^{\boldsymbol{0}} \to K^{*\boldsymbol{0}} \mu^+ \mu^-) / \ \mathrm{BR}(B^{\boldsymbol{0}} \to K^{*\boldsymbol{0}} e^+ e^-)_{q^{\boldsymbol{2}} \in [15, 19](\mathrm{GeV})^{\boldsymbol{2}}}$	[0.58, 0.95]
$\langle F_L(B^{0} o K^{*0} \mu^+ \mu^-) \rangle / \langle F_L(B^{0} o K^{*0} e^+ e^-) \rangle_{q^{2} \in [15, 19](\text{GeV})^{2}}$	[0.998, 0.999]
$\langle A_{F\!B}(B^{0} o {K^{*0}}\mu^+\mu^-) angle / \langle A_{F\!B}(B^{0} o {K^{*0}}e^+e^-) angle_{q^2 \in [15,19](\mathrm{GeV})^2}$	[0.87, 1.01]
$\langle S_5(B^0 o K^{*0} \mu^+ \mu^-) angle / \langle S_5(B^0 o K^{*0} e^+ e^-) angle_{q^2 \in [15, 19] (GeV)^2}$	[0.87, 1.01]
$\mathrm{BR}(B^+ \to K^+ \mu^+ \mu^-) / \ \mathrm{BR}(B^+ \to K^+ e^+ e^-)_{q^2 \in [1, 6](\mathrm{GeV})^2}$	[0.58, 0.95]
$\mathrm{BR}(B^+ \to K^+ \mu^+ \mu^-) / \ \mathrm{BR}(B^+ \to K^+ e^+ e^-)_{q^2 \in [15, 22](\mathrm{GeV})^2}$	[0.58, 0.95]

Nazila Mahmoudi

Cross-check with inclusive modes

Inclusive decays are theoretically cleaner (see e.g. T. Huber, T. Hurth, E. Lunghi, JHEP 1506 (2015) 176)

At Belle-II, for inclusive $b \rightarrow s\ell\ell$:

T. Hurth, FM, JHEP 1404 (2014) 097 T. Hurth, FM, S. Neshatpour, JHEP 1412 (2014) 053

Predictions based on our model-independent analysis

black cross: future measurements at Belle-II assuming the best fit solution red cross: SM predictions

ightarrow Belle-II will check the NP interpretation with theoretically clean modes

Introduction	Anomalies	Implications	NP scenarios	Conclusion
			•ooo	
New physics scena	arios			

Global fits: New physics is likely to appear in C_9 :

$$\mathcal{O}_9 = rac{e^2}{(4\pi)^2} (ar{s} \gamma^\mu b_L) (ar{\ell} \gamma_\mu \ell)$$

It can also affect C'_9 and C_{10} in a much lesser extent.

However, difficult to generate $\delta C_9 \sim -1$ at loop level...

Need for tree level diagrams...

 \rightarrow difficult in MSSM with MFV

Mainstream scenarios:

- Z' bosons
- leptoquarks
- composite models

Introduction 0000000	Anomalies 000000	Implications 00000000000000	NP scenarios ○●○○	Conclusion O
Z' bosons				
		s_{L} μ^{-}		

Z' obvious candidate to generate the O_9 operator

Needs:

- Flavour-changing couplings to left-handed quarks
- Vector-like couplings to leptons
- Flavour violation or non-universality in the lepton sector

Strong constraints from $B_s - \bar{B}_s$ mixing and LEP contact interactions.

Anomalies consistent with a Z' of 1 to 10 TeV

Can appear in many models, like 331 models, gauge $L_{\mu}-L_{ au}$ models, ...

See e.g. Altmannshofer et al. 1308.1501, Gauld et al. 1308.1959, Buras et al. 1309.2466, Gauld et al. 1310.1082, Buras et al. 1311.6729, Altmannshofer et al. 1403.1269, Buras et al. 1409.4557, Glashow et al. 1411.0565, Crivellin et al. 1501.00993, Altmannshofer et al. 1411.3161, Crivellin et al. 1503.03477, Niehoff et al. 1503.03865, Crivellin et al. 1505.02026, Celis et al. 1505.03079, ...

Nazila Mahmoudi

LIO2016 - 7 Sep. 2016

Introduction	Anomalies	Implications	NP scenarios	Conclusion
			0000	
Leptoquarks				
		/- +		

- t-channel diagrams
- Different possible representations, can be scalar (spin 0) or vector (spin 1)
- Cannot alter only C_9 , but both C_9 and C_{10} (= - C_9)
- Cannot be lepton flavour universal and conserve lepton number simultaneously

Model can be tested with $R_{\kappa^{(*)}}$ measurements and searches for $b \to s \mu^{\pm} e^{\mp}$ and $\mu \to e \gamma$

Possible scenario: two leptoquarks coupling to one lepton type only.

See e.g. Hiller et al. 1408.1627, Biswas et al. 1409.0882, Buras et al. 1409.4557, Sahoo et al. 1501.05193, Hiller et al. 1411.4773, Becirevic et al. 1503.09024, Alonso et al. 1505.05164, ...

Introduction	Anomalies	Implications	NP scenarios	Conclusion
0000000	000000	0000000000000	0000	0
Composite mode	ls			

- Neutral resonance ρ_{μ} coupling to the muons via composite elementary mixing
- requires some compositeness for the muons
- can allow for lepton flavour violating couplings
- constrained by the LEP Z-width measurements and $B_s \bar{B}_s$ mixing

In addition, such models may explain the excesses observed in WW, WZ, Wh and $\ell^+\ell^-$ resonance searches by ATLAS and CMS

See e.g. Gripaios et al. 1412.1791, Niehoff, et al. 1503.03865, Niehoff et al. 1508.00569, Carmona et al. 1510.07658, ...

Introduction	Anomalies	Implications	NP scenarios	Conclusion
				•
Conclusion				

- \bullet Latest LHCb results, based on the 3 fb $^{-1}$ data set still show some tensions with the SM predictions
- \bullet Model independent fits point to $C_9^{NP}\sim -1,$ and new physics in muonic C_9^μ is preferred
- In two operator fits there is more than 2σ tension for $\delta C_9^e = \delta C_9^\mu$
- The fit results do not depend very much on whether one uses soft or full form factor approach
- Factorisable power corrections have small effects at observable level
- The cross check with other not-yet-measured ratios (e.g. R_{K^*}) and the inclusive measurements would be of importance to identify the origin of the anomalies

Introduction	Anomalies	Implications	NP scenarios	Conclusion
				•
Conclusion				

- \bullet Latest LHCb results, based on the 3 fb^{-1} data set still show some tensions with the SM predictions
- \bullet Model independent fits point to $C_9^{NP}\sim -1,$ and new physics in muonic C_9^μ is preferred
- In two operator fits there is more than 2σ tension for $\delta C_9^e = \delta C_9^\mu$
- The fit results do not depend very much on whether one uses soft or full form factor approach
- Factorisable power corrections have small effects at observable level
- The cross check with other not-yet-measured ratios (e.g. R_{K^*}) and the inclusive measurements would be of importance to identify the origin of the anomalies

With the 750 GeV being gone, these are at the moment the only significant tensions with the SM at the LHC, so stay tuned!

Introduction	Anomalies	Implications	NP scenarios	Conclusion
Backup				

Backup

Introduction	Anomalies	Implications	NP scenarios	Conclusion
	•. •			

Global fit results assuming new physics in one operator only

	b.f. value	$\chi^2_{\rm min}$	$\mathrm{Pull}_{\mathrm{SM}}$	68% C.L.	95% C.L.
$\delta C_9/C_9^{ m SM}$	-0.18	123.8	3.0 σ	[-0.25, -0.09]	[-0.30, -0.03]
$\delta C_9'/C_9^{ m SM}$	+0.03	131.9	1.0σ	[-0.05, +0.12]	[-0.11, +0.18]
$\delta C_{10}/C_{10}^{\mathrm{SM}}$	-0.12	129.2	1.9σ	[-0.23, -0.02]	[-0.31, +0.04]
$\delta C_9^\mu / C_9^{\rm SM}$	-0.21	115.5	4.2σ	[-0.27, -0.13]	[-0.32, -0.08]
$\delta C_9^e / C_9^{SM}$	+0.25	124.3	2.9σ	[+0.11, +0.36]	[+0.03, +0.46]

No reason that only 2 Wilson coefficients receive contributions from new physics

Larger ranges are allowed for the Wilson coefficients

Introduction	Anomalies	Implications	NP scenarios	Conclusion		
Fit results for four operators: $\{C_9, C'_9, C_{10}, C'_{10}\}$						

No reason that only 2 Wilson coefficients receive contributions from new physics

Larger ranges are allowed for the Wilson coefficients