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II. LATTICE SETTING AND SIMULATION STRATEGY

A. The action

The Euclidean action of the continuum Higgs-Yukawa model containing one doublet of fermions, denoted as t(c) and
b(c), and a complex scalar doublet, ϕ(c), is

Scont[ ¯ψ(c),ψ(c),ϕ(c)] =

∫

d4x

{

1

2

(

∂µϕ
(c)
)† (

∂µϕ(c)
)

+
1

2
m2

0ϕ
(c)†ϕ(c) +

λ0
4

(

ϕ(c)†ϕ(c)
)2
}

+

∫

d4x
{

t(c)/∂t(c) + b(c)/∂b(c) + yb0ψ
(c)
L ϕ(c) b(c)R + yt0ψ

(c)
L ϕ̃(c) t(c)R + h.c.

}

, (1)

where ϕ̃(c) = iτ2ϕ
(c) (τi are the Pauli matrices),

ψ(c)
L = P−ψ

(c) = P−

(

t(c)

b(c)

)

=

(

1− γ5
2

)(

t(c)

b(c)

)

,

t(c)R = P+t
(c) =

(

1 + γ5
2

)

t(c), and similar for b(c)R .

In the above equation, m0 is the bare mass, λ0 labels the bare quartic coupling, and yt0/b0 denote the bare Yukawa
couplings. The superscript, (c), in the scalar and spinor fields indicates that these are dimensionful variables defined
in the continuum. Here we stress that gauge fields are not included in our study, and we perform calculations for only
one doublet of fermions throughout this work. Moreover, if not stated otherwise, the Yukawa couplings yt0 and yb0
are set equal.

It is straightforward to discretise the pure-scalar component of the above action to obtain

Slatt
Φ =

4
∑

α=1

{

−
∑

x,µ

Φα
xΦ

α
x+µ̂ +

∑

x

[

1

2
(8 + m̄2

0)Φ
α
xΦ

α
x +

λ0
4

(Φα
xΦ

α
x)

2
]

}

, (2)

where x is a site on the space-time lattice. The symbol µ̂ denotes the unit vector in the space-time direction µ. The
mass parameter, m̄0 = am0 with a being the lattice spacing, is dimensionless. The real-valued field variables, {Φα

x},
are rendered dimensionless by a proper rescaling with a, and are defined on all lattice sites. These field variables are
related to the discretised version of the complex scalar doublet, ϕ(c), in Eq. (1) through

aϕ(latt) =

(

Φ2 + iΦ1

Φ4 − iΦ3

)

. (3)

It is convenient to rewrite the scalar action in Eq. (2) as

Slatt
φ =

4
∑

α=1

{

−2κ
∑

x,µ

φαxφ
α
x+µ̂ +

∑

x

[

φαxφ
α
x + λ̂ (φαxφ

α
x − 1)2

]

}

, (4)

with the change of variables,

Φα =
√
2κφα, λ0 =

λ̂

κ2
, m̄2

0 =
1− 2λ̂− 8κ

κ
. (5)

For the fermions we use the action

Slatt
f =

∑

x

ψ̄x

[

Dov + P
+
φαxθ

†
αdiag(ŷt, ŷb)P̂+

+ P
−

diag(ŷt, ŷb)φ
α
xθαP̂−

]

ψx, (6)

where ŷt/b =
√
2κyt0/b0 , and

θ1,2,3 = −iτ1,2,3, θ4 = 12×2 , (7)
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where ŷt/b =
√
2κyt0/b0 , and

θ1,2,3 = −iτ1,2,3, θ4 = 12×2 , (7)

3

II. LATTICE SETTING AND SIMULATION STRATEGY

A. The action

The Euclidean action of the continuum Higgs-Yukawa model containing one doublet of fermions, denoted as t(c) and
b(c), and a complex scalar doublet, ϕ(c), is

Scont[ ¯ψ(c),ψ(c),ϕ(c)] =

∫

d4x

{

1

2

(

∂µϕ
(c)
)† (

∂µϕ(c)
)

+
1

2
m2

0ϕ
(c)†ϕ(c) +

λ0
4

(

ϕ(c)†ϕ(c)
)2
}

+

∫

d4x
{

t(c)/∂t(c) + b(c)/∂b(c) + yb0ψ
(c)
L ϕ(c) b(c)R + yt0ψ

(c)
L ϕ̃(c) t(c)R + h.c.

}

, (1)

where ϕ̃(c) = iτ2ϕ
(c) (τi are the Pauli matrices),

ψ(c)
L = P−ψ

(c) = P−

(

t(c)

b(c)

)

=

(

1− γ5
2

)(

t(c)

b(c)

)

,

t(c)R = P+t
(c) =

(

1 + γ5
2

)

t(c), and similar for b(c)R .

In the above equation, m0 is the bare mass, λ0 labels the bare quartic coupling, and yt0/b0 denote the bare Yukawa
couplings. The superscript, (c), in the scalar and spinor fields indicates that these are dimensionful variables defined
in the continuum. Here we stress that gauge fields are not included in our study, and we perform calculations for only
one doublet of fermions throughout this work. Moreover, if not stated otherwise, the Yukawa couplings yt0 and yb0
are set equal.

It is straightforward to discretise the pure-scalar component of the above action to obtain

Slatt
Φ =

4
∑

α=1

{

−
∑

x,µ

Φα
xΦ

α
x+µ̂ +

∑

x

[

1

2
(8 + m̄2

0)Φ
α
xΦ

α
x +

λ0
4

(Φα
xΦ

α
x)

2
]

}

, (2)

where x is a site on the space-time lattice. The symbol µ̂ denotes the unit vector in the space-time direction µ. The
mass parameter, m̄0 = am0 with a being the lattice spacing, is dimensionless. The real-valued field variables, {Φα

x},
are rendered dimensionless by a proper rescaling with a, and are defined on all lattice sites. These field variables are
related to the discretised version of the complex scalar doublet, ϕ(c), in Eq. (1) through

aϕ(latt) =

(

Φ2 + iΦ1

Φ4 − iΦ3

)

. (3)

It is convenient to rewrite the scalar action in Eq. (2) as

Slatt
φ =

4
∑

α=1

{

−2κ
∑

x,µ

φαxφ
α
x+µ̂ +

∑

x

[

φαxφ
α
x + λ̂ (φαxφ

α
x − 1)2

]

}

, (4)

with the change of variables,

Φα =
√
2κφα, λ0 =

λ̂

κ2
, m̄2

0 =
1− 2λ̂− 8κ

κ
. (5)

For the fermions we use the action

Slatt
f =

∑

x

ψ̄x

[

Dov + P
+
φαxθ

†
αdiag(ŷt, ŷb)P̂+
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α
xθαP̂−

]

ψx, (6)

where ŷt/b =
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are rendered dimensionless by a proper rescaling with a, and are defined on all lattice sites. These field variables are
related to the discretised version of the complex scalar doublet, ϕ(c), in Eq. (1) through

aϕ(latt) =

(

Φ2 + iΦ1

Φ4 − iΦ3

)

. (3)

It is convenient to rewrite the scalar action in Eq. (2) as

Slatt
φ =

4
∑

α=1

{

−2κ
∑

x,µ

φαxφ
α
x+µ̂ +

∑

x

[

φαxφ
α
x + λ̂ (φαxφ

α
x − 1)2

]

}

, (4)

with the change of variables,

Φα =
√
2κφα, λ0 =

λ̂

κ2
, m̄2

0 =
1− 2λ̂− 8κ

κ
. (5)

For the fermions we use the action

Slatt
f =

∑

x

ψ̄x

[

Dov + P
+
φαxθ

†
αdiag(ŷt, ŷb)P̂+

+ P
−

diag(ŷt, ŷb)φ
α
xθαP̂−

]

ψx, (6)

where ŷt/b =
√
2κyt0/b0 , and

θ1,2,3 = −iτ1,2,3, θ4 = 12×2 , (7)

Lattice study of the Higgs-Yukawa model in and beyond the Standard Model David Y.-J. Chu

1. Introduction

The Standard Model (SM) has been a successful theory for explaining interactions amongst
elementary particles. However the scalar sector of the SM is trivial and hence the cutoff cannot be
removed, leading to the need of new physics beyond the cutoff scale. The situation may be different
as we investigate the Higgs-Yukawa (HY) sector. Recent works using perturbation theory [1, 2],
as well as lattice studies [3], suggest the HY models may contain non-trivial fixed points that lead
to UV completion. We would like to explore this scenario by performing lattice simulations. The
main task is to be able to distinguish between the Gaussian and the strongly-coupled fixed points.
In order to achieve this, we rely on the method of finite-size scaling (FSS).

Finite-size scaling provides a link between the critical exponents of a phase transition in in-
finite volume theory and the finite-volume scaling behaviour. This method allows us to identify
different universality classes from extracting the critical exponents by studying the theory near
second-order phase transitions. It is well known that in the 4-dimensional pure scalar theory, scal-
ing behaviour near the Gaussian fixed point (GFP) receives logarithmic corrections [4]. In our
current work, we determine the leading logarithmic corrections by performing one-loop calcula-
tions, and test the result for Binder’s cumulant against lattice simulations for a chirally-invariant
HY model with two mass degenerate fermions.

As a separate project, we also present preliminary results for finite temperature properties
of the HY model with a dimension-6 term, (Φ†Φ)3. At low cutoff around a few TeV, effects of
this operator on low energy observables may not be negligible [5–8]. Such a term is in principle
allowed in the presence of cutoff, and can be understood as a proxy for an extension of the SM. We
study the finite temperature property and find indications for temperature-induced first-order phase
transitions near the infinite cutoff limit. If such first-order phase transitions persists in the full SM
and turns out to be strong enough, they can lead to Baryogensis [9].

2. Finite Size Scaling near the Gaussian Fixed Point in the Higgs-Yukawa Model

Universality classes of a theory can be characterised by the renormalisation group (RG) run-
ning behaviour of the couplings near critical points. The GFP in four dimension is special as the
beta function contains a double zero, leading to logarithmic scaling behaviour [4]. Below we study
such scaling behaviour for the HY models. In our calculations, anisotropic lattices have been used
with the volume being L3× Lt , where Lt = 2L is the Euclidean time direction. In this work we
investigate the HY model with scalar quartic coupling λ and degenerate Yukawa interaction y. The
scalar mass square is denoted as m2. We introduce Y = y2. This coupling, Y , has the same clas-
sical dimension as λ in arbitrary space-time dimension. Below we denote the bare quantities with
subscript b. The quantities with a hat are measured in units of the lattice spacing a.

Consider a bare correlator, Mb(m2b,λb,Yb;a,L), at zero momentum, with classical dimension
DM. It depends on the bare couplings, m2b, λb, Yb, the lattice spacing, a, and the box length, L. The

2

Also introduce

Usual Higgs-Yukawa model
with two flavours,

degenerate Yukawa coupling,
no gauge fields.

Lattice chiral fermions

O(4) scalar sector

“Ising form”
 and the hopping parameter 



What the lattice did in the near past

* In the far past (circa 1990) there were many exploratory studies.



Higgs mass bounds v.s. fermion mass
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λ̂ Λ [GEV] mresonance
H Γresonance

H Γpert
H mp

H mc
H

0.01 883(1) 0.278(3) 0.0018(14) 0.0054(1) 0.278(2) 0.274(4)

1.0 1503(5) 0.383(6) 0.0169(4) 0.036(8) 0.386(28) 0.372(4)

∞ 1598(2) 0.403(6) 0.037(9) 0.052(2) 0.405(4) 0.403(7)

TABLE I: The results (taken from Ref. [29]) of a study comparing the resonance parameters of the Higgs boson with the results
of fits to the temporal correlation function and momentum space Higgs boson propagator. Errors are statistical only. Except
for the cut-off scale, all the results are in lattice units. The fermion mass is set to be the physical top-quark mass. Results
from three values of the quartic coupling are presented. Also shown are the resonance mass and width from Breit-Wigner fits
to the scattering cross-section. Finally, a perturbative estimate of the resonance width is included. We note that because of
some data losses the error on mp

H at λ̂ = 1.0 is larger than for the other parameters.

B. Results of the Higgs boson mass bounds

We now turn to the results of the Higgs boson mass bound calculations discussed in the previous section. We first
discuss the results of Ref. [28], where the upper and lower bounds were computed at several choices of the cut-off
scale, with the fermion masses at the physical top-quark mass, and also at mf ∼ 676GeV. The main result from
Ref. [28] is shown in Fig. 4. In the left graph, the situation for a SM top quark mass is shown. The right graph shows
the situation for a fermion mass of mf ∼ 676GeV. It can be clearly seen that while the upper bound is relatively
unaffected when using a heavy fermion mass, the lower bound increases substantially.
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FIG. 4: The cut-off dependence of the upper and lower Higgs boson mass bounds for fermion mass at ∼ 173GeV (left) and
∼ 676GeV (right). All data have been extrapolated to infinite volume.

Apart from the cut-off dependence of the bounds at a fixed value of mf , the dependence of the bounds on mf itself
has also been examined at a fixed value of the lattice cut-off [57], the results of which are shown in Fig. 5 (left). We
clearly observe the increase of the lower bound with increasing mf in this figure. In particular, Fig. 5 suggests that
with a Higgs boson mass of ∼ 125GeV, the mass of a mass-degenerate fourth generation of quarks is restricted to be
less than ∼ 350GeV. This is clearly already below the bounds from direct experimental searches.

P. Gerhold and K. Jansen, 2011

* Constraints on the masses of extra-generation fermions. 



Higgs width (decay to Goldstone modes)

P. Gerhold, K. Jansen and Kallarackal, 2012
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Figure 1: The figure shows the cross-sections as obtained in three different physical
situations for λ̂ = 0.01 (a), λ̂ = 1.0 (b) and λ̂ = ∞ (c). The cross sections are
plotted against the energy Wk. The red points refer to cross sections obtained
from the analysis in the centre of mass frame as originally proposed in [6]. The
blue points denote the cross sections computed within a moving frame [7]. The
solid line is a fit to the data using eq. (9). The computations were performed on
various lattice volumes L3

s × 40 where Ls ∈ {12, 16, 18, 20, 24, 32, 40}.

Especially for the smallest quartic coupling λ̂ = 0.01 the resonance region is
very small (mG = 0.09(1) ⇒ 0.18 ≤ Wk ≤ 0.36) which in turn necessitates
large lattice volumes in order to obtain energy eigenvalues which lead to
scattering phases near the resonance mass. The plots in fig. 1 and fig. 2
show that the analysis of the moving frame can help significantly to extract
reliable results.
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very small (mG = 0.09(1) ⇒ 0.18 ≤ Wk ≤ 0.36) which in turn necessitates
large lattice volumes in order to obtain energy eigenvalues which lead to
scattering phases near the resonance mass. The plots in fig. 1 and fig. 2
show that the analysis of the moving frame can help significantly to extract
reliable results.

12

m.f.
c.o.m.

Wk

σ

0.320.30.280.260.24

1200

1000

800

600

400

200

0

m.f.
c.o.m.

Wk

σ

0.560.520.480.440.40.360.32

1000

800

600

400

200

0

m.f.
c.o.m.

Wk

σ

0.520.480.440.40.360.32

600

500

400

300

200

100

0

(a) (b) (c)

Figure 1: The figure shows the cross-sections as obtained in three different physical
situations for λ̂ = 0.01 (a), λ̂ = 1.0 (b) and λ̂ = ∞ (c). The cross sections are
plotted against the energy Wk. The red points refer to cross sections obtained
from the analysis in the centre of mass frame as originally proposed in [6]. The
blue points denote the cross sections computed within a moving frame [7]. The
solid line is a fit to the data using eq. (9). The computations were performed on
various lattice volumes L3

s × 40 where Ls ∈ {12, 16, 18, 20, 24, 32, 40}.

Especially for the smallest quartic coupling λ̂ = 0.01 the resonance region is
very small (mG = 0.09(1) ⇒ 0.18 ≤ Wk ≤ 0.36) which in turn necessitates
large lattice volumes in order to obtain energy eigenvalues which lead to
scattering phases near the resonance mass. The plots in fig. 1 and fig. 2
show that the analysis of the moving frame can help significantly to extract
reliable results.

12

Table 2: The table summarizes the obtained masses in lattice units for the
bare parameters given in table 1. The Higgs and Goldstone boson masses,
Mp

H and Mp
G respectively, are extracted from the propagator neglecting

the width. The quark mass is computed from the corresponding time slice
correlator and the last columns show the renormalized vacuum expectation
value vR and the cut-off (Λ). For the smaller lattices we have typically
used 20000 and for the largest lattice typically 10000 configurations. The
autocorrelation times were about one in all cases, see also [13]. Note that,
due to a technical problem, for the determination of Mp

H at λ̂ = 1.0 we
have used a significantly smaller statistics than at the other simulation
points.

λ̂ aMp
H aMp

G mt [GeV] avR Λ [GeV]

0.01 0.278(1) 0.085(2) 174(1) 0.2786(3) 883(1)
1.0 0.386(28) 0.133(4) 179(2) 0.1637(5) 1503(5)
∞ 0.405(4) 0.129(1) 178(1) 0.1539(2) 1598(2)

where Lt is the temporal size of the lattice. Throughout this chapter the
temporal extent will be Lt = 40. The subscript c denotes that the discon-
nected part of the correlator has been subtracted. It has been shown in [15]
that the eigenvalues of the correlation matrix decay exponentially with rising
time separation ∆t. In the following the operators which contribute to the
two Goldstone system are collected.

The definition of the observables in the centre of mass frame is given by

O0(t) := H̃ (⃗0, t)

O1(t) :=
1√
3

1

|Q1|
∑

n⃗∈Q1

G̃T (n⃗, t)G̃(−n⃗, t)

Q1 =
{

n⃗ ∈ Z
3|n2 = 0

}

, |Q1| = 1

O2(t) :=
1√
3

1

|Q2|
∑

n⃗∈Q2

G̃T (n⃗, t)G̃(−n⃗, t)

Q2 =
{

n⃗ ∈ Z
3|n2 = 1

}

, |Q2| = 6

O3(t) :=
1√
3

1

|Q3|
∑

n⃗∈Q3

G̃T (n⃗, t)G̃(−n⃗, t)

Q3 =
{

n⃗ ∈ Z
3|n2 = 2

}

, |Q3| = 12.
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Figure 2: The figure shows the scattering phases that correspond to the cross
sections shown in fig. 1 from which we also take the notation. The scattering phases
are plotted as a function of the momentum k. The vertical dotted line indicates
the inelastic threshold. The solid line shows the scattering phase obtained from
the fit function to the cross sections displayed in fig. 1.

Table 3: The table summarizes the obtained final results on the resonance
mass MH and the resonance width ΓH of the Higgs boson. λ̂ denotes the
bare quartic coupling. Λ is the cut-off of the theory. The following two
columns display the resonance parameters computed from the scattering
phases. The χ2 per degree of freedom from the fits to obtain the resonance
parameters are χ2/d.o.f. = 1.3, χ2/d.o.f. = 1.0 and χ2/d.o.f. = 1.2 for
λ̂ = 0.01, λ̂ = 1.0 and λ̂ = ∞, respectively. Γpert

H is the width obtained from
perturbation theory where a non vanishing mass for the Goldstone bosons
has been considered [20]. Finally the mass extracted from the propagator
as well as the eigenvalue corresponding to the Higgs boson mass computed
with the help of the correlation matrix is shown.

λ̂ Λ [GEV] aMH aΓH aΓpert
H aMp

H GEVP

0.01 883(1) 0.278(3) 0.0018(14) 0.0054(1) 0.278(2) 0.274(4)
1.0 1503(5) 0.383(6) 0.0169(4) 0.036(8) 0.386(28) 0.372(4)
∞ 1598(2) 0.403(6) 0.037(9) 0.052(2) 0.405(4) 0.403(7)
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Study of the two-Goldstone elastic scattering a’la Luscher’s method.

Staying below the inelastic threshold, implemented through coupling the scalar fields to external source.



Outline for the rest of the talk

• General issue and strategy.

• Inclusion of a dimension-6 operator.

• Triviality of the 4-dimensional Higgs-Yukawa model.  
 
  

• Outlook.

Strategy: finite-size scaling.

Status of the numerical test.



General issue:  The continuum limit

• Supercomputers only know “pure numbers”.

• All couplings are rescaled to be in lattice units.

• For a theory with asymptotic freedom, and without 
additive mass renormalisation, e.g., QCD:  
 
 
 
 
 
 
       Keep lowering the dimensionless bare couplings.
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General issue:  The continuum limit

• A trivial theory with additive mass renormalisation:  
 
 
 
 

• In practice, we input the bare coupling:  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Scanning in bare couplings, and keep the cut-off.

2

I. INTRODUCTION

κ ∼
1

M2

scalar

a → 0

Λ → ∞

g20

g20(a)
a→0
−→ 0, am0

a→0
−→ 0

g2
R
(µ, a)

a→0
= finite, aMR

a→0
−→ 0 with MR = finite and ≪ Λ.

g20(a)
a→0
−→ finite, am0

a→0
−→ finite

g2
R
(µ, a)

a→0
= 0, amR

a→0
−→ 0.

g20(a), am0 = arbitrary number.

ξ/a −→ ∞.

ξ → ∞.

Acknowledgments

The authosr thank people for very useful discussions. This work is supported by grants.

2

I. INTRODUCTION

κ ∼
1

M2

scalar

a → 0

Λ → ∞

g20

g20(a)
a→0
−→ 0, am0

a→0
−→ 0

g2
R
(µ, a)

a→0
= finite, aMR

a→0
−→ 0 with MR = finite and ≪ Λ.

g20(a)
a→0
−→ finite, am0

a→0
−→ finite

g2
R
(µ, a)

a→0
= 0, amR

a→0
−→ 0.

g20(a), am0 = arbitrary number.

ξ/a −→ ∞.

ξ → ∞.

Acknowledgments

The authosr thank people for very useful discussions. This work is supported by grants.



General strategy:  The continuum limit

• The key point is the separation of the scales.

• It can be achieved at 2nd-order bulk phase transitions:  

• Condensed matter physics:  

• For our purpose:  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At fixed    , take             

At fixed    , take           .
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General strategy:  The continuum limit
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scalar non-linear σ-model at infinite bare Yukawa couplings [58, 59], and hence becomes trivial at a certain cut-off
scale. However, it is not clear what happens at large but finite Yukawa couplings. To be able to detect any differences
from a Gaussian (trivial) theory the critical exponents of the phase transition have to be extracted and compared
with those of the O(4) model. If the strong-coupling regime is indeed different from the weak-coupling one and hence
would be governed by a non-trivial fixed point2, it would be very interesting to investigate the possibility of very
heavy fermions which give rise to a fourth generation, while still maintaining a light Higgs boson in the theory. In
such a scenario it is unclear, whether an analysis as, e.g. [72] is applicable and also, whether the Higgs boson mass
bounds of section III are valid.

The magnetisation, defined in Eqs. (15) and (16), can act as an order parameter to identify and determine the order
of the phase transition. In Fig. 7, the magnetisation for the Higgs-Yukawa model obtained on different lattice volumes
is shown as a function of y for two κ values. In addition, we show the magnetisation as a function of κ for the O(4)
model. The SYM and FM phases can be clearly distinguished and the phase transition is washed out because of finite
volume effects as previously discussed.

The absence of any discontinuities in the magnetisation is strong evidence for a second-order phase transition in all
three depicted cases. In general, second-order phase transitions are classified through their critical exponents and the
question arises if these exponents are different in the strong-Yukawa and pure O(4) models. To answer this question,
a careful investigation of the susceptibility and Binder’s cumulant will be presented in the following.
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FIG. 7: Magnetisation, ⟨m⟩, for the Higgs-Yukawa model at κ = 0.06 (left), κ = 0.00 (middle) and the pure O(4) model (right)
for various volumes. For the O(4) ⟨m⟩ is plotted as a function of decreasing κ to match optically with the Higgs-Yukawa model.
The absence of discontinuities in ⟨m⟩ is an evidence for a second order phase transition.

The critical exponents can be calculated by using the finite-size scaling of the susceptibility, Eq. (26). The susceptibility
is shown in Fig. 8 for the Higgs-Yukawa and O(4) models. This quantity diverges at the critical point in the infinite
volume limit. Such a divergence in infinite volume is reflected in a bulk finite-size scaling behaviour in lattice
calculations. As mentioned before in Eq. (27), the finite-size scaling is predicted by renormalisation group theory,
with modifications resulting from scaling violation such as that discussed in Ref. [61],

χm (t, L) · L−γ/ν
s = g

(

t̂L1/ν
s

)

, with t̂ =
[

T/
(

T (L=∞)
c − C · L−b

s

)

− 1
]

, (32)

where C is a phenomenological parameter and b is a shift exponent [61]. This modification comes from the fact that
the position of the maximum of χm is volume dependent. From Eq. (27) the infinite-volume critical temperature can
be extracted directly. For the O(4) model we do not observe any shift of the maximum and hence Eq. (27) is a good
description of our data in this case. It should be stressed, that the temperature, T , in this section is the control
parameter. In our work, it is either the Yukawa coupling, y, in the Higgs-Yukawa model or the hopping parameter,

2 There has been early lattice work on the 3-dimensional Higgs-Yukawa model [71], attempting at finding fix points that are different
from that of the pure scalar field theory.
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κ, in the pure O(4) model. To extract the critical exponents from the susceptibility, we perform a simultaneous fit of
all data obtained at all volumes to the partly-empirical formula [73],

χm = A

(

L−2/ν
s +B

[

T/T (L=∞)
c − C · L−b

s − 1
]2
)−γ/2

. (33)

This formula was also used for a fit to χm of the O(4) model, but with the modification of excluding the parameters C
and b because of the reasons mentioned above. The fit results are summarised in Tab. II and will be discussed later.
Notice that there may be logarithmic corrections to the scaling behaviour of the susceptibility because triviality may
still be present also in the strong-Yukawa model. These corrections should, in principle, be included in Eq. (33)3.
This is on-going work, and the result will be presented in a later publication. Therefore, we consider our present
values of the critical exponents as preliminary and they should be taken with caution.
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FIG. 8: Susceptibility χm at κ = 0.06 (left), κ = 0.00 (middle) and the O(4) model (right) for various volumes. The curves are
the result of a fit to Eq. (33). The right top boxes in the middle and the right panels show χm for the largest volumes. For the

Higgs-Yukawa model a volume-dependent shift of yc towards y(L=∞)
c can be observed. This shift is not observed in the O(4)

model.

T (L=∞)
c ν γ C b fit interval

κ = 0.06 18.119(67) 0.576(28) 1.038(30) 4.7(1.6) 1.95(18) 17.5, 20.0

κ = 0.00 16.676(15) 0.541(22) 0.996(15) 10(2) 2.42(10) 15.0, 19.0

O(4) 0.304268(27) 0.499(12) 1.086(19) N/A N/A 0.300, 0.308

TABLE II: Results of a correlated fit to the susceptibility according to Eq. (33) where the last column indicates the fit interval.
The parameter T stands either for y in the Higgs-Yukawa model or for κ in the O(4) model. Since no volume-dependent shift
can be observed in the O(4) model for χm, the parameters C and b have not been fitted here. All quoted errors are statistical
only.

It is possible to re-scale the susceptibility according to Eq. (32) for the Higgs-Yukawa theory, or Eq. (27) for the O(4)

model, respectively. The fitted parameters extracted from Eq. (33) can be used to construct χm (t, Ls) · L−γ/ν
s and

test its scaling against t ·L1/ν
s . This is shown in Fig. 9. Points for all volumes collapse on the same curve in each of the

three cases shown. This behaviour is typical for second-order phase transitions and hence provides further evidence
that such a second-order transition happens in the regime of strong Yukawa couplings.

3 These logarithmic corrections are surely present in the finite-size scaling behaviour of the susceptibility in the pure O(4) model [62–66].
However, our exploratory numerical results show that their inclusion produces minor changes in the results of the critical exponents in
the O(4) model.

16

An alternative way of determining critical exponents is via Binder’s cumulant, Eq. (28). One advantage of this
quantity over the susceptibility is its milder power-law scaling violation which is given by

QL = gQL

(

tL1/ν
)

, (34)

where gQL is a universal function and t is defined in Eq. (27). This behaviour can be observed in Fig. 10 where all
volumes intersect at the phase transition point in infinite volume where t = 0. Even for the Higgs-Yukawa model no
shift can be observed and hence the parameters C and b can be completely neglected in the scaling variable.
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FIG. 9: Scaling behaviour of susceptibility at κ = 0.06 (left), κ = 0.00 (middle) and the O(4) model (right) for various volumes.

The value of Binder’s cumulant in the broken phase comes from the fact that
〈

m4
〉

≈
〈

m2
〉2

and hence QL ≈ 2/3 [67].
Our results for QL at the critical point come close to this value for all setups considered here. Still, QL obtained in
the Higgs-Yukawa model differs from the one in the O(4) model. This may arise from effects of finite renormalisation
because of the inclusion of fermions. Its implication in the difference of the O(4) model and the Higgs-Yukawa model
is under investigation now. Furthermore, it can be demonstrated that for Binder’s cumulant, as contrary to the
susceptibility, there is no logarithmic corrections to the scaling behaviour arising from triviality in the pure O(4)
model [64]. Whether or not such corrections can be present in the Higgs-Yukawa model is being studied now.
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FIG. 10: Binder’s Cumulant QL at κ = 0.06 (left), κ = 0.00 (middle) and the O(4) model (right) for various volumes where the
subscript L indicates the finite volume quantity. Note that the value of QL at the critical point is different in the Higgs-Yukawa
and the O(4) models.

The basic idea of extracting the critical exponent, ν, from Binder’s cumulant is the use of the curve collapse of
Eq. (32). If the scaling function gQL is known one will simply minimise [74]

RQL =
1

N

∑

∣

∣

∣
QL − gQL

(

tL1/ν
)
∣

∣

∣
, (N = total number of data points) (35)

Scan the bare parameter space.
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The constraint effective potential

• Phase structure is probed using the vev,  
 

• The constraint effective potential is a useful tool,  
 
 
 
 

• Analytically calculated in perturbation theory.

• Numerically obtained by histograming     .  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(

t
b

)

, ϕ =

(

ϕ2 + iϕ1

ϕ0 − iϕ3

)

, ϕ̃ = iτ2ϕ∗.

a2 a−2

λ6 = 0.

v̂ = aϕc = ⟨m̂⟩ =

〈

1

V

∣

∣

∣

∣

∣

∑

x

Φ0
x

∣

∣

∣

∣

∣

〉

. (1)

e−V U(v̂) ∼

∫

DϕDψ̄Dψ δ
(

ϕ0
0 − ϕc

)

e−S[ϕ,ψ̄,ψ], where ϕ0
0 =

1

V

∫

d4x ϕ0. (2)

Acknowledgments

The authosr thank people for very useful discussions. This work is supported by grants.

2

I. INTRODUCTION

κ ∼ 1
M2

scalar

a → 0

Λ → ∞

g20

g20(a)
a→0
−→ 0, am0

a→0
−→ 0

g2R(µ, a)
a→0
= finite, aMR

a→0
−→ 0 with MR = finite and ≪ Λ.

g20(a)
a→0
−→ finite, am0

a→0
−→ finite

g2R(µ, a)
a→0
= 0, amR

a→0
−→ 0.

g20(a), am0 = arbitrary number.

ξ/a −→ ∞.

ξ → ∞.

ψ =

(

t
b

)

, ϕ =

(

ϕ2 + iϕ1

ϕ0 − iϕ3

)

, ϕ̃ = iτ2ϕ∗.

a2 a−2

λ6 = 0.

v̂ = aϕc = ⟨m̂⟩ =

〈

1

V

∣

∣

∣

∣

∣

∑

x

Φ0
x

∣

∣

∣

∣

∣

〉

. (1)

e−V U(v̂) ∼

∫

DϕDψ̄Dψ δ
(

ϕ0
0 − ϕc

)

e−S[ϕ,ψ̄,ψ], where ϕ0
0 =

1

V

∫

d4x ϕ0. (2)

m̂

Acknowledgments

The authosr thank people for very useful discussions. This work is supported by grants.

2

I. INTRODUCTION

κ ∼ 1
M2

scalar

a → 0

Λ → ∞

g20

g20(a)
a→0
−→ 0, am0

a→0
−→ 0

g2R(µ, a)
a→0
= finite, aMR

a→0
−→ 0 with MR = finite and ≪ Λ.

g20(a)
a→0
−→ finite, am0

a→0
−→ finite

g2R(µ, a)
a→0
= 0, amR

a→0
−→ 0.

g20(a), am0 = arbitrary number.

ξ/a −→ ∞.

ξ → ∞.

ψ =

(

t
b

)

, ϕ =

(

ϕ2 + iϕ1

ϕ0 − iϕ3

)

, ϕ̃ = iτ2ϕ∗.

a2 a−2

λ6 = 0.

v̂ = aϕc = ⟨m̂⟩ =

〈

1

V

∣

∣

∣

∣

∣

∑

x

Φ0
x

∣

∣

∣

∣

∣

〉

. (1)

e−V U(v̂) ∼

∫

DϕDψ̄Dψ δ
(

ϕ0
0 − ϕc

)

e−S[ϕ,ψ̄,ψ], where ϕ0
0 =

1

V

∫

d4x ϕ0. (2)

m̂

Acknowledgments

The authosr thank people for very useful discussions. This work is supported by grants.

2

I. INTRODUCTION

κ ∼ 1
M2

scalar

a → 0

Λ → ∞

g20

g20(a)
a→0
−→ 0, am0

a→0
−→ 0

g2R(µ, a)
a→0
= finite, aMR

a→0
−→ 0 with MR = finite and ≪ Λ.

g20(a)
a→0
−→ finite, am0

a→0
−→ finite

g2R(µ, a)
a→0
= 0, amR

a→0
−→ 0.

g20(a), am0 = arbitrary number.

ξ/a −→ ∞.

ξ → ∞.

ψ =

(

t
b

)

, ϕ =

(

ϕ2 + iϕ1

ϕ0 − iϕ3

)

, ϕ̃ = iτ2ϕ∗.

a2 a−2

λ6 = 0.

v̂ = aϕc = ⟨m̂⟩ =

〈

1

V

∣

∣

∣

∣

∣

∑

x

Φ0
x

∣

∣

∣

∣

∣

〉

. (1)

e−V U(v̂) ∼

∫

DϕDψ̄Dψ δ
(

ϕ0
0 − ϕc

)

e−S[ϕ,ψ̄,ψ], where ϕ0
0 =

1

V

∫

d4x ϕ0. (2)

m̂

Acknowledgments

The authosr thank people for very useful discussions. This work is supported by grants.

Fukuda and Kyriakopoulos, 1985



Adding a dimension-six operatordetailed explanantion. In Euclidean space time the continuum action is given by:

Scont[ψ̄,ψ,ϕ] =

∫

d4x

{

1

2
(∂µϕ)

† (∂µϕ) +
1

2
m2

0ϕ
†ϕ+ λ

(

ϕ†ϕ
)2

+ λ6
(

ϕ†ϕ
)3
}

+

∫

d4x
{

t̄/∂t+ b̄ /∂b+ y
(

ψ̄
L
ϕ b

R
+ ψ̄

L
ϕ̃ t

R

)

+ h.c.
}

, (1)

with ϕ̃ = iτ2ϕ∗ and τ2 being the second Pauli matrix. Besides the standard bare
parameters m2

0 and λ for the Higgs potential and y for the Yukawa coupling, we add

the dimension-6 operator λ6
(

ϕ†ϕ
)3

to the action.
For the numerical implementation of this model we use a polynomial hybrid

Monte Carlo algorithm[22] with dynamical overlap fermions, see ref. [23] for details.
On the lattice, it is convenient to rewrite the bosonic part of the action in the
following way1:

SB[Φ] = −κ
∑

x,µ

Φ†
x [Φx+µ + Φx−µ] +

∑

x

(

Φ†
xΦx + λ̂

[

Φ†
xΦx − 1

]2
+ λ̂6

[

Φ†
xΦx

]3
)

.

(2)
Here the scalar field, Φ, is represented as a real four-vector and the relation to the
continuum notation is given by:

ϕ =
√
2κ

(

Φ2 + iΦ1

Φ0 − iΦ3

)

, m2
0 =

1− 2λ̂− 8κ

κ
, λ =

λ̂

4κ2
, λ6 =

λ̂6
8κ3

. (3)

As said above, our main goal is the exploration of the phase structure of the model
in the presence of the

[

Φ†
xΦx

]3
term with coupling strength λ6. We will use the mag-

netization m as the order parameter2. The magnetization is given by the modulus
of the average scalar field and is related to the vacuum expectation value (vev) via:

m =

〈∣

∣

∣

∣

∣

1

V

∑

x

Φx

∣

∣

∣

∣

∣

〉

, vev =
√
2κ ·m. (4)

For a determination and detailed discussion of the phase structure of the model
for λ6 = 0, we refer to refs. [13, 14].

3. The constraint effective potential

Before resorting to numerical simulations, we study the phase structure analyt-
ically in lattice perturbation theory for which we employ the CEP [24, 21]. We
assume the scalar field to be in the broken phase, so the scalar field decomposes
into the Higgs mode, h, and the three Goldstone modes, gα, with α = 1, 2, 3. The

1The lattice spacing is set to one throughout this paper.
2Here we are only interested in transitions between the symmetric and the spontaneously broken

phases and thus will not consider the staggered magnetization [13, 14].
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With the dimension-6 operator

respectively, for κ = 11760 there are tunneling events between these two values,
typical for a first order phase transition.

From the histogram of the vev with an appropriate binning size, also an effective
potential from the simulation data can be constructed. This has been done in fig. 3b.
The figure demonstrates nicely how the absolute minimum at around v̂ ≈ 0.15
abruptly jumps to v̂ ≈ 0.35 typical for a first order transition.
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(b) CEP from simulations

Figure 3: The left plot shows the trajectories for some ensembles generated around the first order
phase transition generated on 16 × 32 lattices. The data correspond to λ6 = 0.1 and λ = −0.38.
The right plot shows the corresponding CEP as it was obtained by taking the logarithm of the
histograms of the magnetization. The lines in (b) just serve to guide the eye.
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Figure 4: Here we show the CEP U1 eq. (5) for fixed λ6 = 0.001 and various κ values around
the phase transition. The left plot (λ = −0.0088) shows a second order phase transition for
κ ≈ 0.122715. Note that the effective potential at κ ≈ 0.122764 actually corresponds to a cross-
over transition, see the discussion in the text and fig. 5. The right hand plot (λ = −0.0089) also
has a second order transition at κ ≈ 0.12271 and a first order transition κ ≈ 0.1227565

Given the fact that for small values of λ6 the effective potentials describes the
simulation data satisfactory on a quantitative level, it can be utilized to investigate
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histograms of the magnetization. The lines in (b) just serve to guide the eye.
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Figure 4: Here we show the CEP U1 eq. (5) for fixed λ6 = 0.001 and various κ values around
the phase transition. The left plot (λ = −0.0088) shows a second order phase transition for
κ ≈ 0.122715. Note that the effective potential at κ ≈ 0.122764 actually corresponds to a cross-
over transition, see the discussion in the text and fig. 5. The right hand plot (λ = −0.0089) also
has a second order transition at κ ≈ 0.12271 and a first order transition κ ≈ 0.1227565

Given the fact that for small values of λ6 the effective potentials describes the
simulation data satisfactory on a quantitative level, it can be utilized to investigate
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(a) trajectories

κ = 0.11668
κ = 0.11672
κ = 0.11675

(b) CEP from simulation

Figure 2: The left plot shows the Monte Carlo time trajectories of the magnetization corresponding to
simulation data for λ =−0.4 fromfig. 1a where one observes a typical metastable behaviour for κ = 0.11672
with the magnetization jumping between two values. The runs of adjacent κ do not show this behaviour.
The right plot shows the CEP as it is obtained from the simulation for those three values of κ . Both plots
nicely indicate the existence of a first order phase transition.

λ6 = 0.10

λ = −0.380
λ = −0.385
λ = −0.388
λ = −0.389

λ6 = 0.10,λ = −0.388

Figure 3: Here we show the dependence of the Higgs boson mass on the cutoff as it is obtained in the CEP.
The left plot compares the results for various values of λ on a 963× 192 lattice while keeping λ6 = 0.1
constant. Additionally we show the standard model lower bound indicated by the red points. The gap
in the gray data points originates from the first order phase transition. The right plot shows the volume
dependence for various L3× 2L lattices while keeping λ = −0.388 and λ6 = 0.1 fixed. It also shows the
volume dependence of the standard model mass bound.

5. Conclusions and outlook

In this work, we have added a dimension-6 operator to a Higgs-Yukawa model to test the
stability of a so extended SM. We found that for fixed values of λ6 = 0.1 and for a cutoff of
about ! 1.5TeV, the Higgs boson mass can be lowered when the quartic coupling is driven more
and more negative, as was also found in ref. [5]. In addition, we detected that for a certain (negative)
value of the quartic coupling the transition between the symmetric and the broken phase turns first
order and the separation between the cut-off and the low-energy scale is lacking, leading to an
absolute lower bound of the Higgs boson mass. With this we conclude that for the here considered
value of a λ6 coupling a Higgs boson mass of 126GeV is fully compatibale with an addition of a
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is shown for both investigated λ6 values. For λ6 = 0.001 we clearly observe a region
in parameter space where the expected second order transition in κ is present when
the magnitude of λ is chosen small enough. There is an intermediate regime where a
crossover transition sets in within the broken phase which turns, at a critical point,
into a first order transition, separating two broken phases. At some point around
λ ≈ −0.0098 and κ ≈ 0.12267 the line of second order transition runs into the
line of first order transition and only the first order transition remains separating a
symmetric and a broken phase.

κ

λ

(a) λ6 = 0.001

κ

λ

(b) λ6 = 0.1

Figure 6: Phase structure obtained from the CEP U1 (5). There are two phases - a broken and
a symmetric one - separated by lines of first and second order phase transitions. Further there is
a small region in parameter space, where there is also a first order transition between two broken
phases for λ6 = 0.001 and λ6 = 0.1). The lines between the data points are just to guide the eye.

For λ6 = 0.1 the general behaviour is very similar even though the region in
parameter space is extremely narrow where the additional transitions occur in the
broken phase, see the inlet in fig. 6b. In fact, the region is so narrow that it is well
possible that in infinite volume only a single transition line exists with second order
transitions for larger and first order transitions for smaller quartic couplings.

With the CEP one can also obtain the Higgs boson mass from eq. (10). In
figure 7 we show some first results for the cut-off dependence of the Higgs boson
mass obtained by the CEP U1 for a series of λ values around the region, where the
first order transitions of fig. 6 appear. For a value of λ6 = 0.001 in fig. 7a we see
that for the range of cut-off values considered here, the Higgs boson mass can be
lowered compared to the lower Higgs boson mass for vanishing self couplings λ and
λ6 as was also found in ref. [1].

Inspecting, however, fig. 7b we find that for λ6 = 0.1 and for small cut-off values,
the Higgs boson mass is significantly larger than the lower bound at vanishing λ and
λ6. Note thatmH/Λ ≈ 0.1, i.e. we are still staying in the scaling region of the model.
The increase of the Higgs boson mass at small cut-off can be understood from the fact
that the λ6(Φ†Φ)3 term in the action provides a positive contribution to the Higgs
boson mass shift, dominating the negative contribution from the Yukawa coupling.
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Figure 5: Here the volume dependence of the location of the minimum of the CEP U1, i.e. the
vev (upper plots) and its inverse curvature in the minimum as a measurement for the magnetic
susceptibility (lower plots) are shown as a function of κ for λ6 = 0.001 and a set of λ-values.

are summarized in fig. 6 for both λ6 values. For λ6 = 0.001 we clearly observe a
second order phase transition at small absolute values of λ. At intermediate absolute
values of λ an additional crossover transition sets in within the broken phase. This
crossover turns into a first order phase transition around λ ≈ −0.0089. The second
order transition still exists at this point separating the broken and symmetric phases.
Around λ ≈ −0.0098 and κ ≈ 0.12267 the line of second order transition runs into
the line of first order transition. From that point on only the first order transition
remains separating the symmetric and broken phases.

κ

λ

(a) λ6 = 0.001

κ

λ

(b) λ6 = 0.1

Figure 6: Phase structure obtained from the CEP U1 (8). There are two phases - a broken and a
symmetric one - separated by lines of first and second order phase transitions. Furthermore there
is a small region in parameter space, where a first order transition between two broken phases
exists for λ6 = 0.001 and λ6 = 0.1. The lines between the data points are just to guide the eye.

For λ6 = 0.1 the general behaviour is very similar. However, the region in
parameter space where the additional transitions between two broken phases occur

10

v
ev

a
−
1

101

102

103

104

κ

U
′
′

1

−
1
(v
ev

)

163 × 32
323 × 64

643 × 128
963 × 192

1283 × 256

(a) λ = −0.007

v
ev

a
−
1

102

103

104

κ

U
′
′

1

−
1
(v
ev

)

163 × 32
323 × 64

643 × 128
963 × 192

1283 × 256

(b) λ = −0.0085

v
ev

a
−
1

102

103

104

κ

U
′
′

1

−
1
(v
ev

)

163 × 32
323 × 64

643 × 128
963 × 192

1283 × 256

(c) λ = −0.009

Figure 5: Here the volume dependence of the location of the minimum of the CEP U1, i.e. the
vev (upper plots) and its inverse curvature in the minimum as a measurement for the magnetic
susceptibility (lower plots) are shown as a function of κ for λ6 = 0.001 and a set of λ-values.

are summarized in fig. 6 for both λ6 values. For λ6 = 0.001 we clearly observe a
second order phase transition at small absolute values of λ. At intermediate absolute
values of λ an additional crossover transition sets in within the broken phase. This
crossover turns into a first order phase transition around λ ≈ −0.0089. The second
order transition still exists at this point separating the broken and symmetric phases.
Around λ ≈ −0.0098 and κ ≈ 0.12267 the line of second order transition runs into
the line of first order transition. From that point on only the first order transition
remains separating the symmetric and broken phases.

κ

λ

(a) λ6 = 0.001

κ

λ

(b) λ6 = 0.1

Figure 6: Phase structure obtained from the CEP U1 (8). There are two phases - a broken and a
symmetric one - separated by lines of first and second order phase transitions. Furthermore there
is a small region in parameter space, where a first order transition between two broken phases
exists for λ6 = 0.001 and λ6 = 0.1. The lines between the data points are just to guide the eye.

For λ6 = 0.1 the general behaviour is very similar. However, the region in
parameter space where the additional transitions between two broken phases occur

10

2

I. INTRODUCTION

y = 173/246

κ ∼ 1
M2

scalar

a → 0

Λ → ∞

g20

g20(a)
a→0
−→ 0, am0

a→0
−→ 0

g2R(µ, a)
a→0
= finite, aMR

a→0
−→ 0 with MR = finite and ≪ Λ.

g20(a)
a→0
−→ finite, am0

a→0
−→ finite

g2R(µ, a)
a→0
= 0, amR

a→0
−→ 0.

g20(a), am0 = arbitrary number.

ξ/a −→ ∞.

ξ → ∞.

ψ =

(

t
b

)

, ϕ =

(

ϕ2 + iϕ1

ϕ0 − iϕ3

)

, ϕ̃ = iτ2ϕ∗.

a2 a−2

λ6 = 0.

v̂ = aϕc = ⟨m̂⟩ =

〈

1

V

∣

∣

∣

∣

∣

∑

x

Φ0
x

∣

∣

∣

∣

∣

〉

. (1)

e−V U(v̂) ∼

∫

DϕDψ̄Dψ δ
(

ϕ0
0 − ϕc

)

e−S[ϕ,ψ̄,ψ], where ϕ0
0 =

1

V

∫

d4x ϕ0. (2)

m̂

λ6 = 0.1 and λ = −0.40

λ6 = 0.001 λ6 = 0

y tuned to have mt = 173 GeV.

tL1/ν −→ tLd/2× logarithms,



The Higgs mass from the CEP

For larger values of the cut-off, the λ6 coupling becomes less and less relevant and
the Yukawa term provides the major contribution to the mass-shift such that we
eventually find the standard behaviour of the Higgs boson mass as function of the
cut-off in fig. 7b.

We plan to investigate the cut-off dependence of the Higgs boson mass through
non-perturbative numerical simulations in the future. However, if the picture of
fig. 7b is confirmed, this would put already a bound on the values of λ6 since the
126GeV Higgs boson mass would clash with the cut-off dependent mass at low values
of the cut-off in fig. 7b. As a consequence, only rather small values of λ6 ∝ O(0.001)
would be compatible with the 126GeV Higgs boson mass.

m
H

Λ

λ = −0.0080
λ = −0.0085
λ = −0.0088
λ = −0.0089

(a) λ6 = 0.001

m
H

Λ

λ = −0.380
λ = −0.385
λ = −0.388
λ = −0.389

(b) λ6 = 0.1

Figure 7: Shown is the cut-off dependence of the Higgs boson mass obtained from the CEP
according to eq. (10) for λ = 0.001 on a 643× 128-lattice (left) and λ = 0.1 on a 1923× 384 (right).
In both plots we also show the standard model lower mass bound (λ6 = λ = 0).

5. Conclusions

In this letter we have focused on the phase structure of a chiral invariant lat-
tice Higgs-Yukawa model when adding a higher dimensional (φ†φ)3 operator with
coupling strength λ6 to the action. For the first analysis of such a situation we
have restricted ourselves to small values of λ6 which allowed us to compare our
numerically obtained results with analytical predictions from the constraint effec-
tive potential evaluated in the same lattice setup as the numerical simulations were
carried through.

In general, we obtain a very good qualitative and even quantitative agreement
between both approaches which leads to the phase structure in fig. 6 plotted in
the plane of the quartic coupling λ and hopping parameter κ for fixed values of
λ6 = 0.001 and λ6 = 0.1.

Fixing the value of λ6 > 0 stabilizes the potential, allowing thus to drive the
values of λ more and more negative. For sufficiently small values of λ we observe
smooth transitions in the magnetization, fully compatible with the second order
phase transitions observed for λ6 = 0. However, from a certain negative value of λ
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Figure 2: (a) The zero-temperature phase structure of the Higgs-Yukawa model with fixed bare λ6 = 0.001.
The symbol λ in this plot is the bare quartic coupling, λb [5]. (b) The plot of the magnetisation with
λb = −0.008, L̂t = 4,6, anti-periodic boundary condition in time for the fermions, and the corresponding
zero-temperature results (L̂t = 32,40,48) with periodic boundary condition in time for fermions.
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Figure 3: The Monte-Carlo time evolution of ⟨ϕ⟩ near phase transitions at (a) κ = 0.122892 and the lattice
volume 203× 4, (b) κ = 0.12284 and the lattice volume 203× 6.

Our preliminary result shows evidence that for λb=−0.008,−0.0085, where zero-temperature
transitions are second-order, there can exist temperature-induced first-order phase transitions. For
example, in Fig. 2(b) we show when λb = −0.008, the phase transition is second-order at zero-
temperature. The transition becomes first-order when L̂t = 4. As demonstrated in Fig. 3(a), the
HMC history of the magnetisation exhibits coexistence of two states. Note that this result is pre-
liminary and further detailed scaling tests are needed to confirm this scenario. We noticed that
there are no such coexistence of two states when L̂t = 6 as shown in Fig. 3(b). We have also
performed pure scalar lattice simulations with λ6

(

Φ†Φ
)3, where temperature-induced first-order

phase transition is not observed when zero-temperature transitions are second-order.
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Triviality of the Higgs-Yukawa model



Motivation

• Very little doubt that the pure-scalar sector of 
the SM is trivial.  
 
 
 
 
 
 
 

• How about the Higgs-Yukawa sector? 

M. Aizenman, PRL. 47 (1981)

J. Fröhlich, NPB 200 (1982)

M. Luscher and P. Weisz, PLB212 (1988), NPB 290 (1987), 295 (1988), 318 (1989)

M. Hoogervorst and U. Wolff, NPB 855 (2012)

J. Sievert and U. Wolff, PLB 733 (2014)

…

(High-precision study with large volumes)



Two-loop perturbation theory

8

FIG. 2: The renormalization-group flows for the SU(2)⌦U(1) model with 0  ay  0.5 and �0.1  a�  0.5. The white region
is where 0  ay  0.04 and �0.1  a�  0.04; the light gray region is where 0.04  ay  0.2 and �0.1  a�  0.2; and the
dark gray region occupies the rest of the figure. The figures correspond to the following di↵erent choices of loop order in the
beta functions: (1,1) (upper left); (1,2) (upper right); (2,1) (lower left); and (2,2) (lower right). The green flows are the stable
manifolds in coupling constant space which bound the basins of attraction of the fixed point at the origin. The red flows in
(1,2), (2,1) and (2,2) originate along the eigendirections of the fixed points.

tion. The SU(N) ⌦ U(1) symmetry forbids the fermion
bilinears  a T

j,L C b
k,L, �

T
j,RC�k,R, and  ̄a,j,L�k,R, so the

fermions are massless. Our requirement of SU(Nf ) in-
variance restricts the Yukawa coupling to the form given
in Eq. (4.3). As before, we allow either sign of µ2

� and
impose the condition that |µ�| be negligibly small rela-
tive to the range of µ over which we calculate the RG
flows (see also the end of Section II).

One of the motivations for this generalization is that

it enables us to take the combined limit

N ! 1 , Nf ! 1 with r ⌘ Nf

N
fixed

y ! 0 , �! 0 with āy and ā� being

finite functions of µ (4.4)

We will use the symbol limLNN for this limit, where
“LNN” stands for “large Nc and Nf”

2

without any gauge fields. We construct these models so
that the global symmetries forbid any Dirac or Majorana
fermion mass terms, and we also consider the limit where
scalar masses are negligibly small relative to the scales µ
of interest. These models depend on two dimensionless
couplings, a quartic self-coupling � for the scalar field
and a Yukawa coupling y. The beta functions for these
couplings comprise a set of coupled first-order ordinary
di↵erential equations describing how the couplings vary
as functions of µ. Integrating this set of di↵erential equa-
tions, we determine their renormalization-group flows as
functions of µ. To do this, we choose an initial scale, µ0,
where the magnitudes of the couplings are su�ciently
small that perturbative calculations may be reliable, and
then perform the integration. Our method is to compare
RG flows calculated using di↵erent loop orders for the
two beta functions. We recall the basic fact that in these
theories the quartic scalar self-coupling � must be posi-
tive for the boundedness of the energy and equivalently
the stability of the theory. As will be evident in our re-
sults, RG flows may take a theory with positive � to one
with negative �. In this case, two comments are nec-
essary. Strictly speaking, for a su�ciently small range
of negative � the theory may still be metastable, with
a su�ciently long tunneling time that our perturbative
calculations may be physically meaningful. However, for
negative values of � of su�ciently large magnitude, the
theory is simply unstable, and the perturbative analysis
is not applicable or meaningful. In most of our analytic
discussions, therefore, we will implicitly take � to be pos-
itive.

We remark on some earlier related work on Yukawa
models. As is well known, Yukawa proposed such mod-
els [10] as an approach to understanding the binding of
nucleons in nuclei, and pion exchange between nucleons
does, indeed, play an important role in this binding.
Of course, the physics here involves the exchange of a
light approximate Nambu-Goldstone boson between two
baryons, with the baryons being much heavier than the
exchanged ⇡ meson, as indicated by the ratio of masses
m⇡/mN = 0.15. This is quite di↵erent from our our
models, for which, by construction, a global chiral sym-
metry forbids any fermion mass fermions and the scalar
mass is taken to be negligibly small relative to the inter-
val of Euclidean momentum scales µ for which we inte-
grate the beta functions to calculate the RG flows. Some
early studies of perturbative RG equations for Standard
Model Yukawa couplings included Refs. [11, 12]. It was
recognized early on that the one-loop beta function for
a scalar theory without fermions is positive, this theory
is, perturbatively, at least, IR-free; that is, as µ ! 0,
�(µ) ! 0. However, it was also recognized that if one
adds fermions to this scalar theory to get a full scalar-
fermion Yukawa theory, then the fermions contribute a
negative term proportional to y4 in the beta function
d�/d lnµ, and hence, for su�ciently large y, this can
reverse the sign of the full one-loop term in this beta
function and hence possibly render the scalar coupling in

the Yukawa theory nontrivial [12]. This motivated fully
nonperturbative studies, and these were carried out us-
ing lattice studies with dynamical fermions [13] (some
recent work includes [14]). One may obtain a Yukawa
theory starting from a full gauge-fermion-Higgs theory
by turning o↵ the gauge couplings. In this framework,
a natural approach is to start with a chiral gauge the-
ory (exemplified by the Standard Model), which forbids
bare fermion masses in the Lagrangian. However, ow-
ing to fermion doubling on the lattice, it has been chal-
lenging to implement chiral gauge theories on the lattice.
We believe, therefore, that there is continuing interest in
pursuing analyses of renormalization-group evolution of
continuum Yukawa theories using perturbatively calcu-
lated beta functions. Indeed, simple scalar-fermion mod-
els have been of recent interest in studies of quasi-scale
invariant behavior (e.g., [15]; see also [9, 16]).
This paper is organized as follows. In Sect. II we

define our notation for the relevant variables and beta
functions. In Sect. III we study a scalar-fermion model
with an SU(2) ⌦ U(1) global symmetry group. In Sect.
IV we generalize this analysis to a model with Nf copies
(“flavors”) of fermions and an SU(N) ⌦ SU(Nf ) ⌦ U(1)
global symmetry group. Our conclusions are contained
in Sect. V.

II. BETA FUNCTIONS

The beta functions describing the dependence of the
running couplings y = y(µ) and � = �(µ) on the scale µ
where they are measured are

�y ⌘ dy

dt
, �� ⌘ d�

dt
, (2.1)

where dt = d ln(µ/µ0), where µ0 is an initial value of
the reference scale. (The µ dependence of y and � is
implicitly understood below but the argument will often
be suppressed in the notation.) These beta functions can
be expressed as a sum of `-loop terms as

�y =
1X

`=1

b(`)y

(4⇡)2`
, �� =

1X

`=1

b(`)�

(4⇡)2`
, (2.2)

where b(`)y /(4⇡)2` and where b(`)� /(4⇡)2` denote the `-loop
contributions to �y and ��, respectively.
It will also be convenient to define the variables

ay ⌘ y2

(4⇡)2
, a� ⌘ �

(4⇡)2
, (2.3)

which will be used for the SU(2) ⌦ U(1) model studied
below. For the SU(N) ⌦ SU(Nf ) ⌦ U(1) model and, in
particular, for the limit (4.4), we define the variables

āy ⌘ y2N

(4⇡)2
, ā� ⌘ �N

(4⇡)2
. (2.4)

E. Molgaard and R. Shrock, PRD 89 (2014) 
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Fig. 2. Phase diagram at A = 0.0156 (a) and A = 1.0(b), both with N1 = 2. Here as in fig. I solid symbols
denote second- and open symbols first-order phase transitions. In the small-y region the solid and
dashed lines are obtained by (a) bare perturbation calculation; (b) mean-field calculation. In both (a)
and (b) the lines in the large-y region are obtained from the mean-field theory given in the second part
of the subsect. 2.3. Solid lines represent second-order and dashed lines first-order phase transitions.

The dotted lines only indicate a possibility how the phase transition lines may continue.

field calculations. Here we follow the well-known [7,8,6,2] saddle-point type
mean-field approximation.
Because of the U(1) chiral symmetry, one may choose the ansatz for the saddle

point

=a + (_l)L~b, ~2(x) =0,

h1(x) = h + (— ~ h2(x) = 0, (19)

where h,(x), h2(x) are the auxiliary fields introduced in the mean-field calcula-
tion. The saddle-point conditions define h and h~1 as implicit functions of the
magnetization a and the staggered magnetization b,

a + ~u’(h +h~1)+ i~u’(h—h5~)=0, (20)

b + ~u’(h + h~1)— ~-u’(h — h~,)= 0, (21)

A. Hasenfratz, K. Jansen, Y. Shen, NPB 394 (1993)
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scalar non-linear σ-model at infinite bare Yukawa couplings [58, 59], and hence becomes trivial at a certain cut-off
scale. However, it is not clear what happens at large but finite Yukawa couplings. To be able to detect any differences
from a Gaussian (trivial) theory the critical exponents of the phase transition have to be extracted and compared
with those of the O(4) model. If the strong-coupling regime is indeed different from the weak-coupling one and hence
would be governed by a non-trivial fixed point2, it would be very interesting to investigate the possibility of very
heavy fermions which give rise to a fourth generation, while still maintaining a light Higgs boson in the theory. In
such a scenario it is unclear, whether an analysis as, e.g. [72] is applicable and also, whether the Higgs boson mass
bounds of section III are valid.

The magnetisation, defined in Eqs. (15) and (16), can act as an order parameter to identify and determine the order
of the phase transition. In Fig. 7, the magnetisation for the Higgs-Yukawa model obtained on different lattice volumes
is shown as a function of y for two κ values. In addition, we show the magnetisation as a function of κ for the O(4)
model. The SYM and FM phases can be clearly distinguished and the phase transition is washed out because of finite
volume effects as previously discussed.

The absence of any discontinuities in the magnetisation is strong evidence for a second-order phase transition in all
three depicted cases. In general, second-order phase transitions are classified through their critical exponents and the
question arises if these exponents are different in the strong-Yukawa and pure O(4) models. To answer this question,
a careful investigation of the susceptibility and Binder’s cumulant will be presented in the following.
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FIG. 7: Magnetisation, ⟨m⟩, for the Higgs-Yukawa model at κ = 0.06 (left), κ = 0.00 (middle) and the pure O(4) model (right)
for various volumes. For the O(4) ⟨m⟩ is plotted as a function of decreasing κ to match optically with the Higgs-Yukawa model.
The absence of discontinuities in ⟨m⟩ is an evidence for a second order phase transition.

The critical exponents can be calculated by using the finite-size scaling of the susceptibility, Eq. (26). The susceptibility
is shown in Fig. 8 for the Higgs-Yukawa and O(4) models. This quantity diverges at the critical point in the infinite
volume limit. Such a divergence in infinite volume is reflected in a bulk finite-size scaling behaviour in lattice
calculations. As mentioned before in Eq. (27), the finite-size scaling is predicted by renormalisation group theory,
with modifications resulting from scaling violation such as that discussed in Ref. [61],

χm (t, L) · L−γ/ν
s = g

(

t̂L1/ν
s

)

, with t̂ =
[

T/
(

T (L=∞)
c − C · L−b

s

)

− 1
]

, (32)

where C is a phenomenological parameter and b is a shift exponent [61]. This modification comes from the fact that
the position of the maximum of χm is volume dependent. From Eq. (27) the infinite-volume critical temperature can
be extracted directly. For the O(4) model we do not observe any shift of the maximum and hence Eq. (27) is a good
description of our data in this case. It should be stressed, that the temperature, T , in this section is the control
parameter. In our work, it is either the Yukawa coupling, y, in the Higgs-Yukawa model or the hopping parameter,

2 There has been early lattice work on the 3-dimensional Higgs-Yukawa model [71], attempting at finding fix points that are different
from that of the pure scalar field theory.
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κ, in the pure O(4) model. To extract the critical exponents from the susceptibility, we perform a simultaneous fit of
all data obtained at all volumes to the partly-empirical formula [73],

χm = A

(

L−2/ν
s +B

[

T/T (L=∞)
c − C · L−b

s − 1
]2
)−γ/2

. (33)

This formula was also used for a fit to χm of the O(4) model, but with the modification of excluding the parameters C
and b because of the reasons mentioned above. The fit results are summarised in Tab. II and will be discussed later.
Notice that there may be logarithmic corrections to the scaling behaviour of the susceptibility because triviality may
still be present also in the strong-Yukawa model. These corrections should, in principle, be included in Eq. (33)3.
This is on-going work, and the result will be presented in a later publication. Therefore, we consider our present
values of the critical exponents as preliminary and they should be taken with caution.
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FIG. 8: Susceptibility χm at κ = 0.06 (left), κ = 0.00 (middle) and the O(4) model (right) for various volumes. The curves are
the result of a fit to Eq. (33). The right top boxes in the middle and the right panels show χm for the largest volumes. For the

Higgs-Yukawa model a volume-dependent shift of yc towards y(L=∞)
c can be observed. This shift is not observed in the O(4)

model.

T (L=∞)
c ν γ C b fit interval

κ = 0.06 18.119(67) 0.576(28) 1.038(30) 4.7(1.6) 1.95(18) 17.5, 20.0

κ = 0.00 16.676(15) 0.541(22) 0.996(15) 10(2) 2.42(10) 15.0, 19.0

O(4) 0.304268(27) 0.499(12) 1.086(19) N/A N/A 0.300, 0.308

TABLE II: Results of a correlated fit to the susceptibility according to Eq. (33) where the last column indicates the fit interval.
The parameter T stands either for y in the Higgs-Yukawa model or for κ in the O(4) model. Since no volume-dependent shift
can be observed in the O(4) model for χm, the parameters C and b have not been fitted here. All quoted errors are statistical
only.

It is possible to re-scale the susceptibility according to Eq. (32) for the Higgs-Yukawa theory, or Eq. (27) for the O(4)

model, respectively. The fitted parameters extracted from Eq. (33) can be used to construct χm (t, Ls) · L−γ/ν
s and

test its scaling against t ·L1/ν
s . This is shown in Fig. 9. Points for all volumes collapse on the same curve in each of the

three cases shown. This behaviour is typical for second-order phase transitions and hence provides further evidence
that such a second-order transition happens in the regime of strong Yukawa couplings.

3 These logarithmic corrections are surely present in the finite-size scaling behaviour of the susceptibility in the pure O(4) model [62–66].
However, our exploratory numerical results show that their inclusion produces minor changes in the results of the critical exponents in
the O(4) model.
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An alternative way of determining critical exponents is via Binder’s cumulant, Eq. (28). One advantage of this
quantity over the susceptibility is its milder power-law scaling violation which is given by

QL = gQL

(

tL1/ν
)

, (34)

where gQL is a universal function and t is defined in Eq. (27). This behaviour can be observed in Fig. 10 where all
volumes intersect at the phase transition point in infinite volume where t = 0. Even for the Higgs-Yukawa model no
shift can be observed and hence the parameters C and b can be completely neglected in the scaling variable.
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FIG. 9: Scaling behaviour of susceptibility at κ = 0.06 (left), κ = 0.00 (middle) and the O(4) model (right) for various volumes.

The value of Binder’s cumulant in the broken phase comes from the fact that
〈

m4
〉

≈
〈

m2
〉2

and hence QL ≈ 2/3 [67].
Our results for QL at the critical point come close to this value for all setups considered here. Still, QL obtained in
the Higgs-Yukawa model differs from the one in the O(4) model. This may arise from effects of finite renormalisation
because of the inclusion of fermions. Its implication in the difference of the O(4) model and the Higgs-Yukawa model
is under investigation now. Furthermore, it can be demonstrated that for Binder’s cumulant, as contrary to the
susceptibility, there is no logarithmic corrections to the scaling behaviour arising from triviality in the pure O(4)
model [64]. Whether or not such corrections can be present in the Higgs-Yukawa model is being studied now.
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FIG. 10: Binder’s Cumulant QL at κ = 0.06 (left), κ = 0.00 (middle) and the O(4) model (right) for various volumes where the
subscript L indicates the finite volume quantity. Note that the value of QL at the critical point is different in the Higgs-Yukawa
and the O(4) models.

The basic idea of extracting the critical exponent, ν, from Binder’s cumulant is the use of the curve collapse of
Eq. (32). If the scaling function gQL is known one will simply minimise [74]

RQL =
1

N

∑

∣

∣

∣
QL − gQL

(

tL1/ν
)
∣

∣

∣
, (N = total number of data points) (35)
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λ0 → ∞

λ(L̂) ≈ λ∗, Y (L̂) ≈ Y∗, γM ≈ γ∗.

ζM

m̂2(L̂) ∼ L̂1/ν−2

1/ν = 2 + γm2

t ∼ m̂2
0 − m̂2

crit

κ ∼ 1
M2

scalar

a → 0

Λ → ∞

g20

g20(a)
a→0
−→ 0, am0

a→0
−→ 0

g2R(µ, a)
a→0
= finite, aMR

a→0
−→ 0 with MR = finite and ≪ Λ.

g20(a)
a→0
−→ finite, am0

a→0
−→ finite

g2R(µ, a)
a→0
= 0, amR

a→0
−→ 0.

g20(a), am0 = arbitrary number.

ξ/a −→ ∞.

ξ → ∞.

ψ =

(

t
b

)

, ϕ =

(

ϕ2 + iϕ1

ϕ0 − iϕ3

)

, ϕ̃ = iτ2ϕ∗.

a2 a−2

λ6 = 0.

v̂ = aϕc = ⟨m̂⟩ =

〈

1

V

∣

∣

∣

∣

∣

∑

x

Φ0
x

∣

∣

∣

∣

∣

〉

. (1)

e−V U(v̂) ∼

∫

DϕDψ̄Dψ δ
(

ϕ0
0 − ϕc

)

e−S[ϕ,ψ̄,ψ], where ϕ0
0 =

1

V

∫

d4x ϕ0. (2)

m̂

λ6 = 0.1 and λ = −0.40

λ6 = 0.001 λ6 = 0
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which would allow to extract ν as a direct consequence of the scaling behaviour. The sum is taken over all data
points, and RQL is minimal for the correct choice of the parameters ν and TL=∞

c . In the absence of any statistical
and systematic errors the function RQL would become zero.

The scaling function gQL is unknown. However, this can be overcome by the observation that any volume, in the
following called p, can act as a reference function for the correct choice of parameters, taking thus over the role of
gQL . Instead of minimising Eq. (35), we minimise [74]

Pb =

⎡

⎣

1

Nover

∑

p

∑

j ̸=p

∑

i,over

∣

∣

∣
QLj − Ep

(

tijL
1/ν
j

)
∣

∣

∣

2

⎤

⎦

1/2

. (36)

Here, the scaling function is replaced by the interpolating function Ep which is constructed by interpolating the data

points obtained on volume p to volume j for the values of the scaling variable tijL
1/ν
j , with the index i going through

all data points of volume j. In our case, Ep is computed by picking a point in j and taking the four nearest points
in p as a basis for a quadratic interpolation. The normalisation factor Nover is the total number of points used to
evaluate Ep. The results are summarised in Tab. III and the corresponding curve collapse for Binder’s cumulant is
shown in Fig. 11.

In principle, this method could also be used for χm, but it would be necessary to minimise for five parameters.
Our investigation shows that this leads to numerical instabilities and the extraction of critical exponents from the
susceptibility using this method is not possible hitherto.

T (L=∞)
c ν interval

κ = 0.06 18.147(24) 0.550(1) 17.4, 18.8

κ = 0.00 16.667(27) 0.525(6) 16.0, 17.2

O(4) 0.3005(34) 0.50000(3) 0.294, 0.314

TABLE III: Curve collapse results of Binder’s cumulant where the last column indicates the interval of the control parameter
in which the procedure has been used. The parameter T stands either for y in the Higgs-Yukawa model or for κ in the O(4)
model. All errors are statistical only.
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FIG. 11: Scaling behaviour of Binder’s cumulant at κ = 0.06 (left), κ = 0.00 (middle) and the O(4) model (right) for various
volumes using the parameters listed in table III.

At this point we can claim that we have found a second order phase transition between the SYM and the FM phases
in the strong Yukawa coupling regime. The absence of discontinuities in ⟨m⟩ and the second-order finite size scaling
of χm are strong evidence for such a statement. It is interesting to compare the critical exponents extracted from the
susceptibility and Binder’s cumulant with the ones of the weak-Yukawa model and the O(4) model.

Results from Binder’s cumulant with a curve-collapse method

notice: strong (bare) Yukawa coupling

mean-field? logarithmic corrections needed
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RG analysis leads to

M̂b
[

m2b,λb,Yb;a,L
]

Z−DM/2
φ (a, l) = M̂

[

m2(l̂),λ (l̂),Y (l̂); l,L
]

,

= ζM(l,L)L̂−DMM̂
[

m̂2(L̂)L̂2,λ (L̂),Y (L̂);1,1
]

, (2.1)

where ζM(l,L) = exp
(

∫ L

l
γM(ρ)dlogρ

)

, (2.2)

l is a length scale that is assumed to be significantly larger than the lattice spacing. In Eq. (2.1),
the first step is the implementation of (non-perturbative) matching from the bare correlator to its
renormalised counterpart at the renormalisation scale l. The second step is the RG running from l
to L through ζM, where γM is the anomalous dimension of the correlator M. Near a fixed point, the
marginal couplings, λ (L̂) and Y (L̂), in Eq. (2.1) approach constants. Aside from the prefactors, the
correlator in Eq. (2.1) only depends on the dimensionless combination m̂2(L̂)L̂2. The RG analysis
in Eq. (2.1) does not give us the detailed functional form of M̂

[

m̂2(L̂)L̂2
]

. Below we perform
analysis to obtain this functional form for the HY model near the GFP.

Consider the partition function of the HY model which contains scalar O(N) and fermion
SU(Nf ) flavour symmetries with scalar quartic and degenerate Yukawa interactions. Using the
notation ΦT = (φ1, . . . ,φN) and ΨT = (ψ1, . . . ,ψNf ), where the transpose is in flavour space, the
partition function of this theory is,

Z =
∫

DΦ DΨ̄ DΨexp
(

−S[Φ,Ψ̄,Ψ]
)

. (2.3)

Since we are interested in finite volume effects, after performing the fermionic integrals, we sep-
arate the scalar fields into φa = ϕa+ χa, where ϕa are the zero modes. Near the GFP, χa can be
treated perturbatively, and contribute through loop effects. This leads to,

Z =
∫ ∞

−∞
dNϕaN exp(−Se f f [ϕa]) =ΩN−1

∫ ∞

0
dϕ ϕN−1N exp(−Se f f [ϕ ]), (2.4)

where N is the contribution from the non-Gaussian modes of χa, and Se f f is the effective action
containing the result of the Gaussian integrals of the χa and the fermions. In Eq. (2.4), we have
written ϕ2 = ∑N

a=1ϕ
2
a , and the N−dimensional integral of the zero modes is turned into a one-

dimensional integral with the solid angle denoted as ΩN−1. In this work, we are only studying the
theory to one-loop order, where N does not result in the renormalisation of the couplings and the
fields in Se f f [ϕ ], and can be regarded as an overall constant. The effective action only depends on
ϕ because of the O(N) symmetry. In the vicinity of the GFP, Se f f can be studied using the saddle
point expansion around the zero mode [10]. We start discussing this expansion by writing,

exp(−Se f f [ϕ ]) = det (MF [ϕ ])det (MB[ϕ ])
−1 exp

(

−L4m2bϕ2−2L4λbϕ4
)

, (2.5)

where the determinants of the matrices MB[ϕ ] and MF [ϕ ] come from the Gaussian integrals of the
scalar non-zero modes and the fermions, respectively. Expanding the determinants results in the
renormalisation of the couplings, m2(L̂), λ (L̂), and Y (L̂). It also leads to the volume-dependent
additive renormalisation of m2(L̂), as well as the appearance of higher dimensional operators com-
posed of the zero mode, ϕ . The effects of these higher dimensional operators are negligible in the
vicinity of the GFP. This can be seen from the change of variable,

ϕ →
(

2L4λ (L̂)
)−1/4

ϕ ≡ S−1/4ϕ , (2.6)
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around the zero mode. We start discussing this expansion by writing,

exp(−Seff [ϕ]) = det (MF [ϕ]) det (MB[ϕ])
−1 exp

(

−sL4 1

2
M2

b ϕ
2 − sL4λbϕ

4

)

, (11)

where the determinants of the matrices MB[ϕ] and MF [ϕ] come from the Gaussian integrals of the scalar non-zero
modes and the fermions, respectively. Expanding the determinants results in the renormalisation of the couplings,
M2(L−1), λ(L−1), and Y (L−1). It also leads to the volume-dependent additive renormalisation ofM2(L−1), as well as
the appearance of higher dimensional operators composed of the zero mode, ϕ. The effects of these higher dimensional
operators are negligible in the vicinity of the GFP. This can be seen from the change of variable,

ϕ→
(

sL4λ(L−1)
)−1/4

ϕ ≡ S−1/4ϕ, (12)

such that operators with dimension greater than four are suppressed by powers of L̂, and s is the anisotropic ratio
Lt/L. Note that S depends on the renormalised coupling, λ(L−1). This change of variable, Eq. (12), also allows us
to write the partition function as,

Z = NΩN−1S
−N/4

∫ ∞

0
dϕϕN−1 exp

(

−1

2
zϕ2 − ϕ4

)

,

≡ NΩN−1S
−N/4ϕ̄N−1(z), (13)

we can identify the scaling variable as,

z =
√
sM̂2(L−1)L̂2λ(L−1)−1/2, (14)

where the couplings, M̂2(L−1) and λ(L−1), in the scaling variable are renormalised at L−1.

III. TECHNICAL PART

To investigate the scaling behaviour, we need to construct the scaling variable, z, using the renormalised couplings
M̂2(L−1) and λ(L−1), as indicated in Eq. (14). This can be achieved, in the spirit of Eq. (7) and Fig. 1, by
performing a non-perturbative matching to a common scale which is chosen to be mP , then running to L−1 with
one-loop perturbation theory. To ensure the validity of one-loop perturbation theory, we further impose the condition
that m̂P ≪ 1 , and L̂ ≫ 1. In practice, we can take amP = m̂P < 0.2 as our criterion of the simulation data.
The strategy is summerised below:

1. At fixed bare couplings (hence fixed lattice spacing), we fit m̄2
P (L̂) using Eq. (3).

2. Perform infinite-volume extrapolation of m̄2
P (L̂) by Eq. (4) to obtain the physical pole mass square m̂2

P in lattice
units. Note that although mP is a common scale, m̂P can be different at different lattice spacings.

3. Use Eq. (6) to obtain the renormalised quadratic coupling M̂2(mP ). This is to identify m̂P as the renormalised
mass M̂(mP ) in lattice units in the on-shell subtraction scheme at the renormalisation scale mP .

4. Use one-loop RGE’s to run M̂2(mP ) to M̂2(L−1). As detailed in the following subsections, we only need to
determine mPL = m̂P L̂ in this procedure.

5. We also need λ(L−1). This will require the value of λ(mP ), and in general the marginal couplings of the theory,
{gi(mP )}, which can be used as the initial conditions (integration constants) in solving the corresponding RGE’s.
However it is difficult to determine λ(mP ) and {gi(mP )} using lattice data in general. Therefore, it is regarded
as a fit parameter in the analysis procedure.

In the last two steps the perturbative RGE’s are model dependent. We derive the explicit form of scaling variable
in pure scalar and Higgs-Yukawa theories respectively in the following subsections.
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b
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such that operators with dimension greater than four are suppressed by powers of L̂. This change
of variable, Eq. (2.6), also allows us to write the partition function as [10],

Z = N ΩN−1S−N/4
∫ ∞

0
dϕ ϕN−1 exp

(

−
1
2
zϕ2−ϕ4

)

≡ N ΩN−1S−N/4ϕ̄N−1(z), (2.7)

where z =
√
2L̂2m̂2(L̂)λ (L̂)−1/2 can be identified with the scaling variable. The determinants in

Eq. (2.5) will renormalise this scaling variable, resulting in logarithmic corrections as detailed
below.

We first notice that the integrals in Eq. (2.7) can be evaluated, leading to

ϕ̄0 =
π
8
exp

(

z2

32

)

√

|z|
[

I−1/4
(

z2

32

)

−Sgn(z) I1/4
(

z2

32

)]

,

ϕ̄1 =

√
π
8
exp

(

z2

16

)[

1−Sgn(z)Erf
(

|z|
4

)]

, ϕ̄n+2 =−2
d
dz
ϕ̄n, (2.8)

where Iν stands for the modified Bessel function of the first kind. The leading-order logarithmic
corrections to these scaling formulae can be obtained from the one-loop RG equations (RGE’s)

−ρ
d
dρ
Y (ρ) = βYY 2Y (ρ)2, −ρ

d
dρ

ϕ(ρ) = 2δYY (ρ)ϕ(ρ),

−ρ
d
dρ

λ (ρ) = βλλ 2λ (ρ)
2+βλλYλ (ρ)Y (ρ)+βλY2Y (ρ)2,

−ρ
d
dρ

m2(ρ) = 2 [γYY (ρ)+ γλλ (ρ)]m2(ρ), (2.9)

where the β ’s and the γ’s are the one-loop RGE coefficients. They can be calculated straightfor-
wardly. The solutions to these equations give

z =
(

4βλλ 2
Y (l̂)

)1/2
[

Y (l̂)(β+−β−)
]

2γλ
β
λλ2 L̂2

(

m̂2b− m̂2c+
A
L̂2

)

×

[

Y (l̂)
Y (L̂)

]
1
2−

2γY
βYY2

− β−γλ
βYY2βλλ2

{

B+−B−

[

Y (l̂)
Y (L̂)

]

β+−β−
2βYY2

}
1
2−

2γλ
β
λλ2

{

β−B+−β+B−

[

Y (l̂)
Y (L̂)

]

β+−β−
2βYY2

}
1
2
, (2.10)

where β± = (βYY 2 −βλλY )±
√

(βYY 2 −βλλY )2−4βλλ 2βλY 2 and B± = Y (l̂)β±−2λ (l̂)βλλ 2 . This
scaling variable contains four free parameters. Two of them, Y (l̂) and λ (l̂), are integration con-
stants from Eq. (2.9). One also has to determine the additive renormalisation, m̂2c , and the coefficient
A in the volume-dependent shift of m̂2c . The logarithmic volume dependence is in the renormalised
coupling Y (L̂).

To test our analytical formulae, we perform lattice simulations of a HY model with scalar
O(4) symmetry and two fermion flavours at weak couplings, and confront the logarithmic scaling
formula for Binder’s cumulant with numerical results. The continuum action of this model is

Scont [Φ, ψ̄ ,ψ ] =
∫

d4x
{

1
2
(

∂µΦ
)† (∂µΦ

)

+
1
2
m2bΦ†Φ+λb

(

Φ†Φ
)2
}

+
∫

d4x
{

Ψ̄∂/Ψ+ yb
(

Ψ̄LΦbR+ Ψ̄LΦ̃tR+h.c.
)}

, (2.11)

4

2

I. INTRODUCTION

︸ ︷︷ ︸

︸ ︷︷ ︸

︷ ︸︸ ︷

Can compute ⟨ϕk⟩.

λ0 → ∞

λ(L̂) ≈ λ∗, Y (L̂) ≈ Y∗, γM ≈ γ.

ζM

m̂2(L̂) ∼ L̂1/ν−2

1/ν = 2 + γm2

t ∼ m̂2
0 − m̂2

crit

κ ∼ 1
M2

scalar

a → 0

Λ → ∞

g20

g20(a)
a→0
−→ 0, am0

a→0
−→ 0

g2R(µ, a)
a→0
= finite, aMR

a→0
−→ 0 with MR = finite and ≪ Λ.

g20(a)
a→0
−→ finite, am0

a→0
−→ finite

g2R(µ, a)
a→0
= 0, amR

a→0
−→ 0.

g20(a), am0 = arbitrary number.

ξ/a −→ ∞.

ξ → ∞.

ψ =

(

t
b

)

, ϕ =

(

ϕ2 + iϕ1

ϕ0 − iϕ3

)

, ϕ̃ = iτ2ϕ∗.

a2 a−2

λ6 = 0.

v̂ = aϕc = ⟨m̂⟩ =

〈

1

V

∣
∣
∣
∣
∣

∑

x

Φ0
x

∣
∣
∣
∣
∣

〉

. (1)

e−V U(v̂) ∼

∫

DϕDψ̄Dψ δ
(

ϕ0
0 − ϕc

)

e−S[ϕ,ψ̄,ψ], where ϕ0
0 =

1

V

∫

d4x ϕ0. (2)

2

at zero external momenta, with classical dimension DX . It depends on the bare scalar quadratic coupling, M2
b , the

bare marginal couplings, g(b)i , the lattice spacing, a, and the box length, L. The RG analysis leads to

X̂b

[

M2
b , {g

(b)
i }; a−1, L

]

ZX(a−1,mP ) = X̂
[

M2(mP ), {gi(mP )};mP , L
]

,

= ζX(mP , L
−1)X̂

[

M2(mP ), {gi(mP )};L−1, L
]

,

= ζX(mP , L
−1)L̂−DX X̂

[

M̂2(L−1)L̂2, {gi(L−1)}; 1, 1
]

, (7)

where ZX is related to Zφ, which is the wavefunction renormalisation constant defined in Eq. (3), and ζX(mP , L−1)
is the solution to Callan-Symanzik equation, defined as

ζX(mP , L
−1) = exp

(

∫ L−1

mP

γX(t)d log(t)

)

(8)

with γX is the anomalous dimension of the correlator X . If the system we consider is sufficiently close to the phase
transition point, then in Eq. (7) the marginal couplings approach constant values. This leads to the universal scaling
law where the renormalised correlator, X̂ only depends on the scaling variable, M̂2(L−1)L̂2. If the phase transition
is governed by an infrared Gaussian fixed point (GFP), the perturbative running is applicable at low energy. In
this discussion, the first step of Eq. (7) corresponds to the non-perturbative matching in Fig. 1, and the second step
corresponds to the perturbative running.
Consider a model having N−scalar fields ΦT = (φ1, · · · ,φN ), and Nf−degenerate fermions ΨT = (ψ1, . . . ,ψNf

)
(transpose is in the flavour space), with the scalar quartic coupling λ, and the yukawa coupling y. The partition
function of the theory is,

Z =

∫

DΦ DΨ̄ DΨ exp
(

−S[Φ, Ψ̄,Ψ]
)

. (9)

Since we are interested in finite volume effects, after performing the fermionic integrals, we separate the scalar fields
into φa = ϕa + χa, where ϕa are the zero modes. Near the GFP, χa can be treated perturbatively, and contribute
through loop effects. This leads to,

Z =

∫ ∞

−∞
dNϕa N exp(−Seff [ϕa]) = ΩN−1

∫ ∞

0
dϕϕN−1N exp(−Seff [ϕ]), (10)

where N is the contribution from the non-Gaussian modes of χa, and Seff is the effective action containing the

result of the Gaussian integrals of the χa and the fermions. In Eq. (10), we have written ϕ2 =
∑N

a=1 ϕ
2
a, and the

N−dimensional integral of the zero modes is turned into a one-dimensional integral with the solid angle denoted as
ΩN−1. In this work, we are only studying the theory to one-loop order, where N does not result in the renormalisation
of the couplings and the fields in Seff [ϕ], and can be regarded as an overall constant. The effective action only depends
on ϕ because of the O(N) symmetry. In the vicinity of the GFP, Seff can be studied using the saddle point expansion

µ ∼ 1
L
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Λ ∼ 1
a

Perturbative running

Non-Perturbative matching

Energy scale

FIG. 1: Scales in our theory.
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tL1/ν −→ tLd/2× logarithms,

is a universal function of    .   
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at zero external momenta, with classical dimension DX . It depends on the bare scalar quadratic coupling, M2
b , the

bare marginal couplings, g(b)i , the lattice spacing, a, and the box length, L. The RG analysis leads to
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, (7)
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with γX is the anomalous dimension of the correlator X . If the system we consider is sufficiently close to the phase
transition point, then in Eq. (7) the marginal couplings approach constant values. This leads to the universal scaling
law where the renormalised correlator, X̂ only depends on the scaling variable, M̂2(L−1)L̂2. If the phase transition
is governed by an infrared Gaussian fixed point (GFP), the perturbative running is applicable at low energy. In
this discussion, the first step of Eq. (7) corresponds to the non-perturbative matching in Fig. 1, and the second step
corresponds to the perturbative running.
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function of the theory is,

Z =
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(

−S[Φ, Ψ̄,Ψ]
)

. (9)

Since we are interested in finite volume effects, after performing the fermionic integrals, we separate the scalar fields
into φa = ϕa + χa, where ϕa are the zero modes. Near the GFP, χa can be treated perturbatively, and contribute
through loop effects. This leads to,

Z =
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where N is the contribution from the non-Gaussian modes of χa, and Seff is the effective action containing the
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N−dimensional integral of the zero modes is turned into a one-dimensional integral with the solid angle denoted as
ΩN−1. In this work, we are only studying the theory to one-loop order, where N does not result in the renormalisation
of the couplings and the fields in Seff [ϕ], and can be regarded as an overall constant. The effective action only depends
on ϕ because of the O(N) symmetry. In the vicinity of the GFP, Seff can be studied using the saddle point expansion

µ ∼ 1
L

mP

Λ ∼ 1
a

Perturbative running

Non-Perturbative matching

Energy scale
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Lattice study of the Higgs-Yukawa model in and beyond the Standard Model David Y.-J. Chu

RG analysis leads to

M̂b
[

m2b,λb,Yb;a,L
]

Z−DM/2
φ (a, l) = M̂

[

m2(l̂),λ (l̂),Y (l̂); l,L
]

,

= ζM(l,L)L̂−DMM̂
[

m̂2(L̂)L̂2,λ (L̂),Y (L̂);1,1
]

, (2.1)

where ζM(l,L) = exp
(

∫ L

l
γM(ρ)dlogρ

)

, (2.2)

l is a length scale that is assumed to be significantly larger than the lattice spacing. In Eq. (2.1),
the first step is the implementation of (non-perturbative) matching from the bare correlator to its
renormalised counterpart at the renormalisation scale l. The second step is the RG running from l
to L through ζM, where γM is the anomalous dimension of the correlator M. Near a fixed point, the
marginal couplings, λ (L̂) and Y (L̂), in Eq. (2.1) approach constants. Aside from the prefactors, the
correlator in Eq. (2.1) only depends on the dimensionless combination m̂2(L̂)L̂2. The RG analysis
in Eq. (2.1) does not give us the detailed functional form of M̂

[

m̂2(L̂)L̂2
]

. Below we perform
analysis to obtain this functional form for the HY model near the GFP.

Consider the partition function of the HY model which contains scalar O(N) and fermion
SU(Nf ) flavour symmetries with scalar quartic and degenerate Yukawa interactions. Using the
notation ΦT = (φ1, . . . ,φN) and ΨT = (ψ1, . . . ,ψNf ), where the transpose is in flavour space, the
partition function of this theory is,

Z =
∫

DΦ DΨ̄ DΨexp
(

−S[Φ,Ψ̄,Ψ]
)

. (2.3)

Since we are interested in finite volume effects, after performing the fermionic integrals, we sep-
arate the scalar fields into φa = ϕa+ χa, where ϕa are the zero modes. Near the GFP, χa can be
treated perturbatively, and contribute through loop effects. This leads to,

Z =
∫ ∞

−∞
dNϕaN exp(−Se f f [ϕa]) =ΩN−1

∫ ∞

0
dϕ ϕN−1N exp(−Se f f [ϕ ]), (2.4)

where N is the contribution from the non-Gaussian modes of χa, and Se f f is the effective action
containing the result of the Gaussian integrals of the χa and the fermions. In Eq. (2.4), we have
written ϕ2 = ∑N

a=1ϕ
2
a , and the N−dimensional integral of the zero modes is turned into a one-

dimensional integral with the solid angle denoted as ΩN−1. In this work, we are only studying the
theory to one-loop order, where N does not result in the renormalisation of the couplings and the
fields in Se f f [ϕ ], and can be regarded as an overall constant. The effective action only depends on
ϕ because of the O(N) symmetry. In the vicinity of the GFP, Se f f can be studied using the saddle
point expansion around the zero mode [10]. We start discussing this expansion by writing,

exp(−Se f f [ϕ ]) = det (MF [ϕ ])det (MB[ϕ ])
−1 exp

(

−L4m2bϕ2−2L4λbϕ4
)

, (2.5)

where the determinants of the matrices MB[ϕ ] and MF [ϕ ] come from the Gaussian integrals of the
scalar non-zero modes and the fermions, respectively. Expanding the determinants results in the
renormalisation of the couplings, m2(L̂), λ (L̂), and Y (L̂). It also leads to the volume-dependent
additive renormalisation of m2(L̂), as well as the appearance of higher dimensional operators com-
posed of the zero mode, ϕ . The effects of these higher dimensional operators are negligible in the
vicinity of the GFP. This can be seen from the change of variable,

ϕ →
(

2L4λ (L̂)
)−1/4

ϕ ≡ S−1/4ϕ , (2.6)
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Numerical test in the O(4) scale model
Scaling of magnetisation(scalar vev)
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Notice: fit without logarithms is almost as good.



Numerical test in the O(4) scale model
Scaling of the susceptibility
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Notice: fit without logarithms is almost as good.



Numerical test in the O(4) scale model
Scaling of Binder’s cumulant
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Conclusion and outlook

• The lattice can play a role in the study of the Higgs-Yukawa 
sector of the Standard Model and beyond.

•  We investigated the effects of a dimension-6 operator.  
 
 
 

• We derived the logarithmic scaling formulae for the Higgs-
Yukawa model near the mean-field fixed point.

It can be non-negligible in the Higgs-boson mass.
It can induce first-order thermal phase transition at high cutoff. 
Other quantities, such as the Higgs-boson width can be studied.

Numerical test in the O(4) scalar model shows good fits.
However, fits without logarithms are almost as good.

We are generating data at larger volumes for this test. 



Backup slides



First scanning, the magnetisation (VEV)



Susceptibility and Binder’s cumulant

Next step: add data and work with large volumes



Scalar wavefunction renormalisation

Note: one-loop perturbation theory gives unity.



The pole mass



Extrapolating away, in pole mass,
the around-the-world volume effects

symmetric phase

Pre
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Extrapolating away, in pole mass,
the around-the-world volume effects

near the critical point
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Extrapolating away, in pole mass,
the around-the-world volume effects

broken phase
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The extrapolated pole mass 

Extrapolation performed with data at the seven largest volumes
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