Topics on lattice studies of the Higgs-Yukawa model

Composite models, electroweak physics and the LHC

IPNL Lyon 07/09/2016

C.-J. David Lin National Chiao-Tung University, Hsinchu, Taiwan Centre de Physique Théorique, Marseille, France

Collaborators

- David Y.-J. Chu (NCTU, Taiwan)
- Karl Jansen (DESY Zeuthen, Germany)
- Bastian Knippschild (U. of Bonn, Germany)
- Attila Nagy (Humboldt U. zu Berlin, Germany)

The theory

$$S^{\text{cont}}[\bar{\psi^{(c)}},\psi^{(c)},\varphi^{(c)}] = \int d^4x \left\{ \frac{1}{2} \left(\partial_{\mu}\varphi^{(c)} \right)^{\dagger} \left(\partial^{\mu}\varphi^{(c)} \right) + \frac{1}{2} m_0^2 \varphi^{(c)\dagger} \varphi^{(c)} + \frac{\lambda_0}{4} \left(\varphi^{(c)\dagger} \varphi^{(c)} \right)^2 \right\}$$

$$+ \int d^4x \left\{ \overline{t^{(c)}} \partial t^{(c)} + \overline{b^{(c)}} \partial b^{(c)} + y_{b_0} \overline{\psi^{(c)}_L} \varphi^{(c)} b^{(c)}_R + y_{t_0} \overline{\psi^{(c)}_L} \tilde{\varphi}^{(c)} t^{(c)}_R + h.c. \right\}$$

$$Usual Higgs-Yukawa model with two flavours, degenerate Yukawa coupling, no gauge fields.$$

$$a\varphi^{(\text{latt})} = \begin{pmatrix} \Phi^{2} + i\Phi^{1} \\ \Phi^{4} - i\Phi^{3} \end{pmatrix}$$

$$S_{\Phi}^{\text{latt}} = \sum_{\alpha=1}^{4} \left\{ -\sum_{x,\mu} \Phi_{x}^{\alpha} \Phi_{x+\hat{\mu}}^{\alpha} + \sum_{x} \left[\frac{1}{2} (8 + \bar{m}_{0}^{2}) \Phi_{x}^{\alpha} \Phi_{x}^{\alpha} + \frac{\lambda_{0}}{4} (\Phi_{x}^{\alpha} \Phi_{x}^{\alpha})^{2} \right] \right\}$$

$$\Phi^{\alpha} = \sqrt{2\kappa} \phi^{\alpha}, \quad \lambda_{0} = \frac{\hat{\lambda}}{\kappa^{2}}, \quad \bar{m}_{0}^{2} = \frac{1 - 2\hat{\lambda} - 8\kappa}{\kappa}$$

$$S_{\phi}^{\text{latt}} = \sum_{\alpha=1}^{4} \left\{ -2\kappa \sum_{x,\mu} \phi_{x}^{\alpha} \phi_{x+\hat{\mu}}^{\alpha} + \sum_{x} \left[\phi_{x}^{\alpha} \phi_{x}^{\alpha} + \hat{\lambda} (\phi_{x}^{\alpha} \phi_{x}^{\alpha} - 1)^{2} \right] \right\}$$

$$\text{(Ising form)}$$
and the hopping parameter

$$S_f^{\text{latt}} = \sum_x \bar{\psi}_x \left[D^{ov} + P_+ \phi_x^\alpha \theta_\alpha^\dagger \text{diag}(\hat{y}_t, \hat{y}_b) \hat{P}_+ + P_- \text{diag}(\hat{y}_t, \hat{y}_b) \phi_x^\alpha \theta_\alpha \hat{P}_- \right] \psi_x$$

 $\theta_{1,2,3} = -i\tau_{1,2,3}, \ \theta_4 = 1_{2\times 2}$

Lattice chiral fermions

Also introduce $Y = y^2$

What the lattice did in the near past

* In the far past (circa 1990) there were many exploratory studies.

Higgs mass bounds v.s. fermion mass

* Constraints on the masses of extra-generation fermions.

Higgs width (decay to Goldstone modes)

Study of the two-Goldstone elastic scattering a'la Luscher's method.

Staying below the inelastic threshold, implemented through coupling the scalar fields to external source.

Outline for the rest of the talk

- General issue and strategy.
- Inclusion of a dimension-6 operator.
- Triviality of the 4-dimensional Higgs-Yukawa model.
 - **★** Strategy: finite-size scaling.
 - **★** Status of the numerical test.
- Outlook.

General issue: The continuum limit $a \to 0$ or $\Lambda \to \infty$

- Supercomputers only know "pure numbers".
- All couplings are rescaled to be in lattice units.
- For a theory with asymptotic freedom, and without additive mass renormalisation, e.g., QCD:

$$g_0^2(a) \xrightarrow{a \to 0} 0, \ am_0 \xrightarrow{a \to 0} 0$$

while

 $g_{\rm R}^2(\mu, a) \stackrel{a \to 0}{=}$ finite, $aM_{\rm R} \stackrel{a \to 0}{\longrightarrow} 0$ with $M_{\rm R}$ = finite and $\ll \Lambda$.

Keep lowering the dimensionless bare couplings.

General issue: The continuum limit $a \to 0$ or $\Lambda \to \infty$

• A trivial theory with additive mass renormalisation:

 $g_0^2(a) \xrightarrow{a \to 0} \text{finite}, am_0 \xrightarrow{a \to 0} \text{finite}$ while $g_R^2(\mu, a) \xrightarrow{a \to 0} 0, am_R \xrightarrow{a \to 0} 0.$

• In practice, we input the bare coupling:

 $g_0^2(a), am_0 = arbitrary$ number.

Scanning in bare couplings, and keep the cut-off.

General strategy: The continuum limit $a \to 0$ or $\Lambda \to \infty$

- The key point is the separation of the scales.
- It can be achieved at 2nd-order bulk phase transitions: $\xi/a \longrightarrow \infty$.

non-thermal

- Condensed matter physics: At fixed a, take $\xi \to \infty$.
- For our purpose:

At fixed ξ , take $a \to 0$.

General strategy: The continuum limit $a \to 0$ and $\Lambda \to \infty$

Scan the bare parameter space.

Location

Scaling

Detailed scaling

The constraint effective potential

Fukuda and Kyriakopoulos, 1985

• Phase structure is probed using the vev,

$$\hat{v} = a\varphi_c = \langle \hat{m} \rangle = \left\langle \frac{1}{V} \left| \sum_x \Phi_x^0 \right| \right\rangle.$$

• The constraint effective potential is a useful tool,

$$e^{-V \boldsymbol{U}(\hat{\boldsymbol{v}})} \sim \int \mathcal{D}\varphi \mathcal{D}\bar{\psi} \mathcal{D}\psi \ \delta\left(\varphi_0^0 - \varphi_c\right) \ e^{-S[\varphi,\bar{\psi},\psi]},$$

where
$$\varphi_0^0 = \frac{1}{V} \int d^4 x \ \varphi^0$$
.

- Analytically calculated in perturbation theory.
- Numerically obtained by histograming \hat{m} .

Adding a dimension-six operator

 $\lambda_6 \left(\varphi^{\dagger} \varphi\right)^3$

With the dimension-6 operator

y = 173/246 $\lambda_6 = 0.1$ and $\lambda = -0.38$

First-order phase transition?

With the dimension-6 operator

y = 173/246

 $\lambda_6 = 0.1$ and $\lambda = -0.40$

First-order phase transition observed

The phase structure

y = 173/246

The Higgs mass from the CEP

y = 173/246

The Higgs mass lower bounds

y = 173/246

$$\lambda_6 = 0.001$$

 $\lambda_6 = 0.1$

Finite-temperature phase transition

Parameter choice at which non-thermal transition is 2nd-order, while thermal transition is 1st-order

Triviality of the Higgs-Yukawa model

Motivation

• Very little doubt that the pure-scalar sector of the SM is trivial.

M.Aizenman, PRL. 47 (1981)

J. Fröhlich, NPB 200 (1982)

. . .

M. Luscher and P.Weisz, PLB212 (1988), NPB 290 (1987), 295 (1988), 318 (1989)

M. Hoogervorst and U. Wolff, NPB 855 (2012)

J. Sievert and U. Wolff, PLB 733 (2014) (High-precision study with large volumes)

• How about the Higgs-Yukawa sector?

Two-loop perturbation theory

E. Molgaard and R. Shrock, PRD 89 (2014)

Early work on the quantum phase structure

A. Hasenfratz, K. Jansen, Y. Shen, NPB 394 (1993)

What we found previously

$$t \sim \hat{m}_0^2 - \hat{m}_{\rm crit}^2$$

Results from Binder's cumulant with a curve-collapse method

	$T_c^{(L=\infty)}$	ν	interval
$\kappa = 0.06$	18.147(24)	0.550(1)	17.4, 18.8
$\kappa = 0.00$	16.667(27)	0.525(6)	16.0, 17.2
O(4)	0.3005(34)	0.50000(3)	0.294, 0.314

logarithmic corrections needed

Which continuum limit? Strong or weak coupling?

(Finite-size scaling techniques)

For observables containing only the scalar fields:

 $\hat{M}_b\left[m_b^2, \lambda_b, Y_b; a, L\right] Z_{\phi}^{-D_M/2}(a, l) = \hat{M}\left[m^2(\hat{l}), \lambda(\hat{l}), Y(\hat{l}); l, L\right],$ $= \zeta_{M}(l,L)\hat{L}^{-D_{M}}\hat{M}\left[\hat{m}^{2}(\hat{L})\hat{L}^{2},\lambda(\hat{L}),Y(\hat{L});1,1\right]$ $\zeta_M(l,L) = \exp\left(\int_{l}^{L} \gamma_M(\rho) \mathrm{d}\log\rho\right)$ Fixed point: $\lambda(\hat{L}) \approx \lambda_*, Y(\hat{L}) \approx Y_*, \gamma_M \approx \gamma_*$. Power law from ζ_M . Similar RG argument also results in the following power-law scaling: $\hat{m}^2(\hat{L}) \sim \hat{L}^{1/\nu-2}$ where $1/\nu = 2 + \gamma_m^2$ mass-square anomalous dimension Naive expectation for the mean-field FP Logarithmic corrections are present

Mean-field FSS for the Higgs-Yukawa model

Sequel of E. Brezin and J. Zinn-Justin, NPB 257 (1985)

$$\bar{\varphi}_0 = \frac{\pi}{8} \exp\left(\frac{z^2}{32}\right) \sqrt{|z|} \left[I_{-1/4} \left(\frac{z^2}{32}\right) - \operatorname{Sgn}(z) I_{1/4} \left(\frac{z^2}{32}\right) \right],$$
$$\bar{\varphi}_1 = \frac{\sqrt{\pi}}{8} \exp\left(\frac{z^2}{16}\right) \left[1 - \operatorname{Sgn}(z) \operatorname{Erf}\left(\frac{|z|}{4}\right) \right], \ \bar{\varphi}_{n+2} = -2 \frac{\mathrm{d}}{\mathrm{d}z} \bar{\varphi}_n$$

 \blacktriangleright Can compute $\langle \varphi^k \rangle$. $S^k \langle \varphi^k \rangle$ is a universal function of \mathcal{Z} .

Mean-field FSS for the Higgs-Yukawa model

 $\hat{M}_{b}\left[m_{b}^{2},\lambda_{b},Y_{b};a,L\right]Z_{\phi}^{-D_{M}/2}(a,l) = \hat{M}\left[m^{2}(\hat{l}),\lambda(\hat{l}),Y(\hat{l});l,L\right],\\ = \zeta_{M}(l,L)\hat{L}^{-D_{M}}\hat{M}\left[\hat{m}^{2}(\hat{L})\hat{L}^{2},\lambda(\hat{L}),Y(\hat{L});1,1\right]$

To obtain logarithmic corrections to the MF scaling \rightarrow Integrate one-loop RGE in perturbation theory from l to L. Three couplings and the wavefunction renormalisation. ★ Additive scalar mass renormalisation. \star Also need to specify l . \rightarrow Identify the scalar (Higgs) pole mass, $m_{\rm P}$, as 1/l. Can be extracted in lattice units from the lattice data. ***** Run to 1/L using perturbation theory. (only need to know $m_P L$) ***** Need the hierarchy $a/L < am_P << 1$. Reduces the number of fit parameters by three!

Numerical test in the O(4) scale model Scaling of magnetisation(scalar vev)

Notice: fit without logarithms is almost as good.

Numerical test in the O(4) scale model Scaling of the susceptibility

Notice: fit without logarithms is almost as good.

Numerical test in the O(4) scale model Scaling of Binder's cumulant

Conclusion and outlook

- The lattice can play a role in the study of the Higgs-Yukawa sector of the Standard Model and beyond.
- We investigated the effects of a dimension-6 operator.

 \star It can be non-negligible in the Higgs-boson mass.

* It can induce first-order thermal phase transition at high cutoff.

- Ther quantities, such as the Higgs-boson width can be studied.
- We derived the logarithmic scaling formulae for the Higgs-Yukawa model near the mean-field fixed point.
 - \star Numerical test in the O(4) scalar model shows good fits.
 - ★ However, fits without logarithms are almost as good.
 - * We are generating data at larger volumes for this test.

Backup slides

First scanning, the magnetisation (VEV)

Susceptibility and Binder's cumulant

Next step: add data and work with large volumes

Scalar wavefunction renormalisation

Note: one-loop perturbation theory gives unity.

The pole mass

Extrapolating away, in pole mass, the around-the-world volume effects

symmetric phase

Extrapolating away, in pole mass, the around-the-world volume effects

near the critical point

Extrapolating away, in pole mass, the around-the-world volume effects

The extrapolated pole mass

Extrapolation performed with data at the seven largest volumes