Composite Higgs models based on a conformal fixed point

Anna Hasenfratz University of Colorado Boulder

LIO international conference on Composite Models, Electroweak Physics and the LHC Sep 7 2016, Lyon

Composite Higgs models based on a conformal fixed point

Anna Hasenfratz University of Colorado Boulder

Based on R. Brower, A. H, C. Rebbi, E. Weinberg, O. Witzel, PRD93, 114514 (2016)

and A. H, C. Rebbi, O. Witzel, (1609.01401)

Higgs era of particle physics

Even with the 125GeV Higgs the Standard Model is not stand-alone:

- not UV complete
- naturalness /hierarchy problem
- DM, neutrinos,
- ➡ Implies new physics

There were hints in June 2015

There were hints in December 2015

Hints in September 2016

But there must be new physics

Hints in September 2016

But there must be new physics

Can Stock Photo

Most strongly coupled BSM models are effective models, describing part of the dynamics:

Start with Higgsless, massless SM

 $\rightarrow \mathcal{L}_{SM}$ \mathcal{L}_{SM0}

Most strongly coupled BSM models are effective models, describing part of the dynamics:

Start with Higgsless, massless SM \rightarrow Full SM

Most strongly coupled BSM models are effective models, describing part of the dynamics:

Start with Higgsless, massless SM \longrightarrow Full SM

$$\mathcal{L}_{SD} + \mathcal{L}_{SM0} + \mathcal{L}_{int} \rightarrow \mathcal{L}_{SM} + \dots$$

Full SM + additional states from \mathcal{L}_{SD}

The construction has to

- predict the 125GeV Higgs
- give mass to the SM gauge fields
- give mass to the SM fermions :
- $\mathcal{L}_{SD} = \mathcal{L}_{SD1} + \mathcal{L}_{SD2} + \dots$ 4-fermion interaction or partial compositness
- give mass to \mathcal{L}_{SD} fermions and generate 4-fermion interactions: \mathcal{L}_{UV} sector

Most strongly coupled BSM models are effective models, describing part of the dynamics:

Start with Higgsless, massless SM \longrightarrow Full SM

$$\begin{array}{cccc} \mathcal{L}_{UV} & \rightarrow & \mathcal{L}_{SD} + \mathcal{L}_{SM0} + \mathcal{L}_{int} & \rightarrow & \mathcal{L}_{SM} + \dots \\ & & & & & & & \\ \hline \\ \text{This could come from} & & & & \text{Full SM + additional} \\ \text{a UV complete theory} & & & & \text{states from } \mathcal{L}_{SD} \end{array}$$

The construction has to

- predict the 125GeV Higgs
- give mass to the SM gauge fields
- give mass to the SM fermions :

 $\mathcal{L}_{SD} = \mathcal{L}_{SD1} + \mathcal{L}_{SD2} + \dots$ 4-fermion interaction or partial compositness

- give mass to \mathcal{L}_{SD} fermions and generate 4-fermion interactions: \mathcal{L}_{UV} sector

 \mathcal{L}_{SD} : N_f fermions, SU(N_c) gauge, chirally broken, coupled to the SM

- EW symmetry breaking by massless pions \checkmark
- Higgs sector

What keeps the Higgs light ?

 \mathcal{L}_{SD} : N_f fermions, SU(N_c) gauge, chirally broken, coupled to the SM

- EW symmetry breaking by massless pions \checkmark
- Higgs sector

What keeps the Higgs light ?

Pseudo Nambu-Goldstone Higgs: Higgs is a pNGB; its mass emerges from interactions

non-trivial vacuum alignment $F_{\pi} = (SM vev) / sin(\chi) > 246GeV$

 \mathcal{L}_{SD} : N_f fermions, SU(N_c) gauge, chirally broken, coupled to the SM

- EW symmetry breaking by massless pions \checkmark
- Higgs sector

What keeps the Higgs light?

Dilaton-like Higgs:

The system is below but close to the conformal window: broken conformal symmetry

 \rightarrow possibly light 0++ scalar

 F_{π} = SM vev ~ 246GeV

Pseudo Nambu-Goldstone Higgs: Higgs is a pNGB; its mass emerges from interactions

non-trivial vacuum alignment $F_{\pi} = (SM vev) / sin(\chi) > 246GeV$

 \mathcal{L}_{SD} : N_f fermions, SU(N_c) gauge, chirally broken, coupled to the SM

- EW symmetry breaking by massless pions \checkmark
- Higgs sector

What keeps the Higgs light?

 Fermion/Yukawa sector How to generate SM fermion masses ?

Dilaton-like Higgs:

The system is below but close to the conformal window: broken conformal symmetry

 \rightarrow possibly light 0++ scalar

 F_{π} = SM vev ~ 246GeV

Pseudo Nambu-Goldstone Higgs: Higgs is a pNGB; its mass emerges from interactions

non-trivial vacuum alignment $F_{\pi} = (SM vev) / sin(\chi) > 246GeV$

Some of the promising candidates for \mathcal{L}_{SD} are chirally broken in the IR but conformal in the UV: (Luti&Okui(hep-lat/00409274), Dietrich&Sannino(hep-ph/0611341), Vecchi(1506.00623), Ferretti(1312.5330),....

UV	conformal			chirally broken
	$\Lambda_{_{UV}}$	Fermion masses	$\Lambda_{_{I\!R}}$	Higgs dynamics
				Many possibilities:
				 SU(3) gauge with 4 flavors
				 SU(4) with 2 reps. flavors
				 SU(3) gauge with 8 flavors
				 SU(3) gauge with 2 sextet
				 SU(2) gauge with 2 flavors
				- etc
				Ma, Cacciapaglia,JHEP1603,211 Vecchi, 1506.00623
				Ferretti et al,JHEP1403,077
				LSD1601.04027
				Four et al 1601.03302, etc

Some of the promising candidates for \mathcal{L}_{SD} are chirally broken in the IR but conformal in the UV: (Luti&Okui(hep-lat/00409274), Dietrich&Sannino(hep-ph/0611341), Vecchi(1506.00623), Ferretti(1312.5330),....

chirally broken conformal Λ_{IV} Fermion masses Λ_{IR} Higgs dynamics Many possibilities: Add enough fermions to - SU(3) gauge with 4 flavors drive the system into the - SU(4) with 2 reps. flavors conformal window; - SU(3) gauge with 8 flavors If the fermions are massive^{*}, they will decouple at Λ_{IR} - SU(3) gauge with 2 sextet - SU(2) gauge with 2 flavors - etc Ma, Cacciapaglia, JHEP1603, 211 Vecchi, 1506.00623

Ferretti et al, JHEP1403,077

Fodor et al 1601.03302, etc

LSD1601.04027

 * What gives mass to the additional fermions? That is dynamics beyond $\,\Lambda_{_{UV}}$.

Lattice realization: 4+8 mass-split model

"Prototype": SU(3) gauge with $4\ell+8h$ fundamental flavors (N_h=8 "heavy" and N_{\ell}=4 light or massless)

UV	conformal	chirally broken
	$\Lambda_{_{UV}}$ Fermion masses $\Lambda_{_{I\!R}}$	Higgs dynamics
	Add 8 "heavy" fundamental	SU(3) gauge with 4 light
	flavors: $N_f = 4 + 8 = 12$:	fundamental flavors:
	\rightarrow conformal dynamics	prototype pNGB or dilaton-Higgs

The construction

- ensures chiral symmetry breaking in the IR
- "walking" is arbitrarily tunable by mh
- anomalous dimensions are that of the conformal IRFP

This system is a prototype - many similar models are possible

Proposed pNGB scenario : (Ma, Cacciapaglia, JHEP 1603 (2016) 211)

4 massless/ light flavors \rightarrow 15 Goldstone bosons Quantum numbers are determined by their SM couplings Transformation under SU(2)_L x SU(2)_R custodial symmetry 15SU(4) =(2,2)+(2,2)+(3,1)+(1,3)+(1,1)

Honestly: that was the simplest lattice model to investigate. Good enough for a prototype / pilot study

Why 12 total flavors?

There is strong evidence that N_f =12 is **conformal** (mass degenerate chiral lim.) UV physics of 4+8 is governed by IRFP

- $\rightarrow g^2$ is irrelevant , m_h controls dynamics
- \rightarrow walking
- \rightarrow anomalous dimension determined by IRFP

Step scaling function vs g^2 (c=0.3, τ_0 =0.1, volumes 16⁴ to 36⁴) A.H, D. Schaich, in preparation

Why 12 total flavors?

There is strong evidence that N_f =12 is **conformal** (mass degenerate chiral lim.) UV physics of 4+8 is governed by IRFP

- $\rightarrow g^2$ is irrelevant , m_h controls dynamics
- \rightarrow walking
- \rightarrow anomalous dimension determined by IRFP

Step scaling function vs g^2 (c=0.3, τ_0 =0.1, volumes 16⁴ to 36⁴) A.H, D. Schaich, in preparation

Even the slope is close to 4-loop PT

Questions for lattice study:

- How predictive is this model?
- What is the spectrum: light-light, and heavy-heavy, heavy-light?
- What is the effect of the 8 heavy flavors on the light spectrum?
- Is the heavy spectrum present in the IR dynamics?
- How does the coupling run/walk?
- What is the anomalous dimension at the IRFP: $\psi\psi\psi$ and $\bar\psi\psi$

Questions for lattice study:

- How predictive is this model?
- What is the spectrum: light-light, and heavy-heavy, heavy-light?
- What is the effect of the 8 heavy flavors on the light spectrum?
- Is the heavy spectrum present in the IR dynamics?
- How does the coupling run/walk ?
- What is the anomalous dimension at the IRFP: $\psi\psi\psi$ and $\bar\psi\psi$

- $\mbox{-}\xspace$ Take N_f above the conformal window
- Split the masses: $N_f = N_\ell + N_h$

 N_h flavors are massive, m_h varies \rightarrow decouple in the IR

- $\mbox{-}\xspace$ Take N_f above the conformal window
- Split the masses: $N_f = N_\ell + N_h$

 N_h flavors are massive, m_h varies \rightarrow decouple in the IR

- $\mbox{-}\xspace$ Take N_f above the conformal window
- Split the masses: $N_f = N_\ell + N_h$

 N_h flavors are massive, m_h varies \rightarrow decouple in the IR

- $\mbox{-}\xspace$ Take N_f above the conformal window
- Split the masses: $N_f = N_\ell + N_h$

 N_h flavors are massive, m_h varies \rightarrow decouple in the IR

- $\mbox{-}\xspace$ Take N_f above the conformal window
- Split the masses: $N_f = N_\ell + N_h$

 N_h flavors are massive, m_h varies \rightarrow decouple in the IR

Running coupling

RG flows predict the running coupling:

3 regions:

• UV :

from cut-off to $g \sim g^*$

- walking: m_h small, g~g*
- IR : heavy flavors decouple,
 Nℓ light flavors are chirally broken

walking can be tuned by $m_h \rightarrow 0$

Running coupling on the lattice

Gradient flow transformation defines a renormalized coupling Luescher arXiv:1006.4518

$$g_{GF}^2(\mu = \frac{1}{\sqrt{8t}}) = \frac{1}{\mathcal{N}} t^2 \langle E(t) \rangle$$

t: flow time; E(t):energy density

 $g^2_{G\!F}$ is used for scale setting as

$$g_{GF}^2(t=t_0) = \frac{0.3}{N}$$

It is appropriate to determine the renormalized running coupling

- on large enough volumes
- at large enough flow time
- in the continuum limit

Running coupling on the lattice

Gradient flow transformation defines a renormalized coupling Luescher arXiv:1006.4518

$$g_{GF}^2(\mu = \frac{1}{\sqrt{8t}}) = \frac{1}{\mathcal{N}} t^2 \langle E(t) \rangle$$

t: flow time; E(t):energy density

 g^2_{GF} is used for scale setting as

$$g_{GF}^2(t=t_0) = \frac{0.3}{N}$$

It is appropriate to determine the renormalized running coupling

- on large enough volumes
- at large enough flow time
- in the continuum limit

use t-shift improved coupling

Running coupling : 4+8 flavors

 $g_{GF}^2(\mu)$ develops a "shoulder" as $m_h \rightarrow 0$: this is walking ! Walking range can be tuned arbitrarily with m_h

Running coupling : 4+8 flavors

 $g_{GF}^2(\mu)$ develops a "shoulder" as $m_h \rightarrow 0$: this is walking ! Walking range can be tuned arbitrarily with m_h

Running coupling : 4+8 flavors

 $g_{GF}^2(\mu)$ develops a "shoulder" as $m_h \rightarrow 0$: this is walking ! Walking range can be tuned arbitrarily with m_h

In conformal systems Wilson RG considerations predict the mass dependence of all dimensional quantities (hyperscaling)

If the scale changes as $\mu \rightarrow \mu' = \mu/b, b > 1$ the couplings run as

 $\hat{m}(\mu) \rightarrow \hat{m}(\mu') = b^{y_m} \hat{m}(\mu)$ (increases) $g \rightarrow g^*$

Any 2-point correlation function at large b scales as

 $C_H(t;g_i,\hat{m}_i,\mu) \rightarrow b^{-2y_H}C_H(t/b;g^*,b^{y_m}\hat{m}_h,b^{y_m}\hat{m}_\ell,\mu)$

$$\equiv b^{-2y_H} C_H(t/b;g^*,b^{y_m}\hat{m}_h,\hat{m}_\ell/\hat{m}_h,\mu)$$

since

$$C_H(t) \propto e^{-M_H t} \longrightarrow aM_H \propto (\hat{m}_h)^{1/y_m} F_H(m_\ell/m_h)$$

where $F_H(m_{\ell}/m_h)$ is a universal function

In conformal systems Wilson RG considerations predict the mass dependence of all dimensional quantities (hyperscaling)

If the scale changes as $\mu \rightarrow \mu' = \mu/b, b > 1$ the couplings run as

 $\hat{m}(\mu) \rightarrow \hat{m}(\mu') = b^{y_m} \hat{m}(\mu)$ (increases) $g \rightarrow g^*$

Any 2-point correlation function at large b scales as

 $C_H(t;g_i,\hat{m}_i,\mu) \rightarrow b^{-2y_H}C_H(t/b;g^*,b^{y_m}\hat{m}_h,b^{y_m}\hat{m}_\ell,\mu)$

$$\equiv b^{-2y_H} C_H(t/b;g^*,b^{y_m}\hat{m}_h,\hat{m}_\ell/\hat{m}_h,\mu)$$

$$C_H(t) \propto e^{-M_H t} \longrightarrow aM_H \propto (\hat{m}_h)^{1/y_m} F_H(m_\ell/m_h)$$

since

where $F_H(m_{\ell}/m_h)$ is a universal function

In conformal systems Wilson RG considerations predict the mass dependence of all dimensional quantities (hyperscaling)

If the scale changes as $\mu \rightarrow \mu' = \mu/b, b > 1$ the couplings run as

where $F_{\mu}(m_{\ell}/m_{h})$ is a universal function

 $\hat{m}(\mu) \rightarrow \hat{m}(\mu') = b^{y_m} \hat{m}(\mu)$ (increases) $g \rightarrow g^*$

Any 2-point correlation function at large b scales as

 $C_H(t;g_i,\hat{m}_i,\mu) \rightarrow b^{-2y_H}C_H(t/b;g^*,b^{y_m}\hat{m}_h,b^{y_m}\hat{m}_\ell,\mu)$

$$\equiv b^{-2y_H} C_H(t/b;g^*,b^{y_m}\hat{m}_h,\hat{m}_\ell/\hat{m}_h,\mu)$$

$$C_H(t) \propto e^{-M_H t} \longrightarrow aM_H \propto (\hat{m}_h)^{1/y_m} F_H(m_\ell/m_h)^{1/y_m}$$

since

Masses scale as

$$aM_H \propto (\hat{m}_h)^{1/y_m} F_H(m_\ell / m_h)$$

Ratios are universal functions of m_{ℓ}/m_h

$$M_{H_{1}} / M_{H_{2}} = \Phi_{H} (m_{\ell} / m_{h}),$$
$$M_{H_{1}} / F_{\pi} = \tilde{\Phi}_{H} (m_{\ell} / m_{h})$$

In the m_{ℓ} =0 chiral limit dimensionless ratios are independent of m_h If F_{π} is known, the rest of the spectrum is predicted - no more free parameters

- True for light-light, heavy-light and heavy-heavy spectrum
- This is very different from QCD!

Corrections to scaling

The gauge coupling in N_f=12 runs slow $g \rightarrow g^*$ is not a (very) good approximation, corrections are needed Cheng A H X Liu Petropol

Cheng, A.H., Y. Liu, Petropoulos, Schaich, PRD90 (2014) 014509

Ratios scale as

$$M_{H_1} / F_{\pi} = \tilde{\Phi}_H (m_{\ell} / m_h) (1 + c_0 m_h^{\omega})$$

 c_0 depends on g^2 and the observable, ω is universal : both can be determined from $N_f\text{=}12$ studies

Light spectrum

pion, rho, a0, a1, nucleon and 0⁺⁺ scalar

Light spectrum

pion, rho, a0, a1, nucleon and 0⁺⁺ scalar

A closer look

pion, rho, a0, a1, nucleon and 0⁺⁺ scalar

Chiral limit is quite straightforward

The ratios are very similar to QCD and N_f =12, interpolating in between

0⁺⁺ is just above, closely following the pion where is the chiral limit ?

Jigression SU(3) with 8 fundamental fermions LSD Collaboration

 M_H/F_{π} vs m_f

pion, rho, a1, nucleon and 0⁺⁺ scalar Compare to 4+8!

$$M_{\rho}/F_{\pi} \approx 8$$

Jigression SU(3) with 8 fundamental fermions LSD Collaboration

 M_H/F_{π} vs m_f

pion, rho, a1, nucleon and 0⁺⁺ scalar Compare to 4+8!

$$M_{\rho}/F_{\pi} \approx 8$$

First hyperscaling tests in 4+8:

Ratios are universal functions of m_{ℓ}/m_h

$$M_{H_1} / F_{\pi} = \tilde{\Phi}_H (m_{\ell} / m_h)$$

$$M_{H_1} / M_{H_2} = \Phi_H (m_{\ell} / m_h),$$

 a_*F_{π} and a_*m_ℓ vs m_ℓ/m_h

 $a_{\star}F_{\pi}$ is finite in the chiral limit — of course!

Light-light and heavy-heavy **vector** in terms of F_{π} Compare to 12 flavors (m_{ℓ} = m_h) and PDG (m_{ℓ} << m_h)

- The 4*l*+8h heavy spectrum is not QCD-like
- QCD is not hyperscaling

Light-light and heavy-heavy **vector** in terms of F_{π} Compare to 12 flavors (m_{ℓ} = m_h) and PDG (m_{ℓ} << m_h)

Heavy M_{vt} / F_π increases but F_π
is finite in the chiral limit
Heavy M_{vt} is only 3 times heavier
than light M_{vt}

- It could be accessible in experiments

- The 4*l*+8h heavy spectrum is not QCD-like
- QCD is not hyperscaling

Light-light and heavy-heavy **pseudo scalar** in terms of F_{π} Compare to 12 flavors (m_l=m_h) and PDG (m_l << m_h)

- The 4*l*+8h heavy spectrum is not QCD-like
- QCD is not hyperscaling

Light-light and heavy-heavy a_1 in terms of F_{π} Compare to 12 flavors ($m_\ell = m_h$) and PDG ($m_\ell << m_h$)

- The 4*l*+8h heavy spectrum is not QCD-like
- QCD is not hyperscaling

The heavy-heavy spectrum

Light-light and heavy-heavy pseudo scalar and a₁ in terms of vector mass

The increase in the heavy-heavy is mostly due to the light normalization

Summary & Outlook

Mass-split models that are conformal in the UV, chirally broken in the IR are best of both worlds:

- controlled walking
- anomalous dimension
- hyperscaling for all masses: predictive power!
- Higgs sector is based on the light/massless fermions
- \bullet tower of states few times heavier than F_{π}
- the heavy-light and heavy-heavy hadrons are also accessible h-h, h-l spectrum are very different from QCD

Many interesting possibilities lattice studies can investigate no-perturbative properties both specific and generic systems

Synergy between lattice and phenomenology could benefit both areas

Summary & Outlook

Mass-split models that are conformal in the UV, chirally broken in the IR are best of both worlds:

- controlled walking
- anomalous dimension
- hyperscaling for all masses: predictive power!
- Higgs sector is based on the light/massless fermions
- \bullet tower of states few times heavier than F_{π}
- the heavy-light and heavy-heavy hadrons are also accessible h-h, h-l spectrum are very different from QCD

Many interesting possibilities lattice studies can investigate no-perturbative properties both specific and generic systems

Synergy between lattice and phenomenology could benefit both areas

Summary & Outlook

Mass-split models that are conformal in the UV, chirally broken in the IR are best of both worlds:

- controlled walking
- anomalous dimension
- hyperscaling for all masses: predictive power!
- Higgs sector is based on the light/massless fermions
- \bullet tower of states few times heavier than F_{π}
- the heavy-light and heavy-heavy hadrons are also accessible h-h, h-l spectrum are very different from QCD

Many interesting possibilities lattice studies can investigate no-perturbative properties both specific and generic systems

Synergy between lattice and phenomenology could benefit both areas