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New Physics

There were hints in June 2015
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New Physics

There were hints in December 2015
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New Physics

Hints in September 2016

But
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Composite Higgs Models

Most strongly coupled BSM models are effective models, describing
part of the dynamics:

Start with Higgsless, massless SM — Full SM

Lo — SM
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Composite Higgs Models

Most strongly coupled BSM models are effective models, describing
part of the dynamics:

Start with Higgsless, massless SM —>  Full SM
Lo+ Lo+ L — — Lo +..

int

Full SM + additional
states from L.,

The construction has to
- predict the 125GeV Higgs r
- give mass to the SM gauge fields SD

- give mass to the SM fermions : =L+ Ly, + ..
4-fermion interaction or partial compositness

- give mass to L., fermions and generate 4-fermion
Interactions: ﬁw sector



Composite Higgs Models

Most strongly coupled BSM models are effective models, describing
part of the dynamics:

Start with Higgsless, massless SM —>  Full SM
L, — Ly+Lyo+L —— Ly, +..

int

| |

This could come from Full SM + additional
a UV complete theory states from L,

The construction has to
- predict the 125GeV Higgs r
- give mass to the SM gauge fields SD

- give mass to the SM fermions : =L+ Ly, + ..
4-fermion interaction or partial compositness

- give mass to L., fermions and generate 4-fermion
Interactions: ﬁw sector



Light Higgs

L, - Nffermions, SU(Nc) gauge, chirally broken, coupled to the SM

 EW symmetry breaking by massless pions v

* Higgs sector
What keeps the Higgs light ?
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emerges from interactions

non-trivial vacuum alignment
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Light Higgs

L, - Nffermions, SU(Nc) gauge, chirally broken, coupled to the SM

 EW symmetry breaking by massless pions v
* Higgs sector

What keeps the Higgs light ?
* Fermion/Yukawa sector

. Different mechanism
How to generate SM fermion masses ?

Dilaton-like Higgs: Pseudo Nambu-Goldstone Higgs:
The system is below but close to ~ Higgs is a pNGB; its mass
the conformal window: broken emerges from interactions
conformal symmetry
—s possibly light 0++ scalar non-trivial vacuum alignment

F. = SM vev ~ 246GeV Fr = (SM vev) / sin(x) > 246GeV



What is L, ?

Some of the promising candidates for L, are chirally broken in the IR

but conformal in the UV: (Luti&Okui(hep-1at/00409274), Dietrich&Sannino(hep-ph/0611341) ,
Vecchi(1506.00623), Ferretti(1312.5330), .....

conformal chirally broken

UV . > IR
A, Fermion masses A, Higgs dynamics




What is L, ?

Some of the promising candidates for L, are chirally broken in the IR

but conformal in the UV: (Luti&Okui(hep-lat/00409274), Dietrich&Sannino(hep-ph/0611341) ,
Vecchi(1506.00623), Ferretti(1312.5330), .....

conformal chirally broken

uv . >
A, Fermion masses A, Higgs dynamics

Many possibilities:
- SU(3) gauge with 4 flavors
- SU(4) with 2 reps. flavors
- SU(3) gauge with 8 flavors
(
(
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3) gauge with 2 sextet
2) gauge with 2 flavors

Ma, Cacciapaglia,JHEP1603,211
Vecchi, 1506.00623

Ferretti et al, JHEP1403,077
LSD1601.04027

Fodor et al 1601.03302, etc



What is L, ?

Some of the promising candidates for L, are chirally broken in the IR

but conformal in the UV: (Luti&Okui(hep-lat/00409274), Dietrich&Sannino(hep-ph/0611341) ,
Vecchi(1506.00623), Ferretti(1312.5330), .....

conformal chirally broken
UV s IR
A, Fermion masses A, Higgs dynamics
Add enough fermions to Many possibilities:
drive the system into the - SU(3) gauge with 4 flavors
conformal window; - SU(4) with 2 reps. flavors
If the fermions are massive’, - SU(3) gauge with 8 flavors
they will decouple at A - SU(3) gauge with 2 sextet
- SU(2) gauge with 2 flavors
- efc
) Ma, Cacciapaglia,JHEP1603,211
What gives mass to the additional fermions? Vecchi, 1506.00623
That is dynamics beyond AUV _ Ferretti et al,JHEP1403,077

LSD1601.04027
Fodor et al 1601.03302, etc



Lattice realization: 4+8 mass-split model

“Prototype”: SU(3) gauge with 4£+8h fundamental flavors
(Nh=8 "heavy” and N,=4 light or massless)

UV conformal chirally broken R
AUV Fermion masses A, Higgs dynamics
Add 8 “heavy” fundamental SU(3) gauge with 4 light
flavors: Nf = 4+8 = 12 : fundamental flavors:
— conformal dynamics prototype pNGB or dilaton-Higgs

The construction
- ensures chiral symmetry breaking in the IR
- “walking” is arbitrarily tunable by mn
- anomalous dimensions are that of the conformal IRFP

This system is a prototype - many similar models are possible



Why 4 light flavors?

Proposed pNGB scenario : (Ma, Cacciapaglia, JHEP 1603 (2016) 211)

4 massless/ light flavors — 15 Goldstone bosons

Quantum numbers are determined by their SM couplings

Transformation under SU(2)L x SU(2)r custodial symmetry
158U(4) =(2,2)+(2,2)+(3,1)+(1,3)+(1,1)

Honestly: that was the simplest lattice model to investigate.
Good enough for a prototype / pilot study



Why 12 total flavors?

There is strong evidence that Ni=12 is conformal (mass degenerate chiral lim.)
UV physics of 4+8 is governed by IRFP

— g2 is irrelevant , mn controls dynamics

— walking

— anomalous dimension determined by IRFP

Step scaling function vs g2
(c=0.3, 70=0.1, volumes 16* to 36%)
A.H, D. Schaich, in preparation
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There is strong evidence that Ni=12 is conformal (mass degenerate chiral lim.)
UV physics of 4+8 is governed by IRFP

— g2 is irrelevant , mn controls dynamics

— walking

— anomalous dimension determined by IRFP

Step scaling function vs g2
(c=0.3, 70=0.1, volumes 16* to 36%)
A.H, D. Schaich, in preparation

Even the slope is close to 4-loop PT




Lattice study of 4+8 mass-split model

Questions for lattice study:
- How predictive is this model?
- What is the spectrum: light-light, and heavy-heavy, heavy-light?
- What is the effect of the 8 heavy flavors on the light spectrum?
- Is the heavy spectrum present in the IR dynamics?
- How does the coupling run/walk “?
- What is the anomalous dimension at the IRFP: ywy and vy



Lattice study of 4+8 mass-split model

Questions for lattice study:
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- What is the effect of the 8 heavy flavors on the light spectrum?
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Phase diagram of a mass-split model

Recap:
 Take Nt above the conformal window

* Split the masses: Nfr = Ny + Ny,
N, flavors are massive, msvaries — decouple in the IR
Ne (=2 -4) flavors are massless, my,= 0 — chirally broken

N, flavors

Va\

m, =am,

N, + Nn flavors
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Phase diagram of a mass-split model

Recap:
 Take Nt above the conformal window

* Split the masses: Nfr = Ny + Ny,
N, flavors are massive, msvaries — decouple in the IR
Ne (=2 -4) flavors are massless, my,= 0 — chirally broken

N, flavors
A How predictive
m, = am, is this model?
g m,,m,—0
N, + Nn flavors l

sets the scale



Running coupling

RG flows predict the running coupling:

‘ 3 regions:
| « UV:
‘ \ from cut-off to g ~ g*
\ - walking: m; small, g~g*
\ | * IR:
) heavy flavors decouple,

N light flavors are
chirally broken

@ . walking can be tuned by
AR Au Na M
mr - O




Running coupling on the lattice

Gradient flow transformation defines a renormalized coupling
Luescher arXiv:1006.4518

2 _ 1 _1 9)
gGF('u_W)_Wt (E@) t: flow time;
E(t):energy density
gé. is used for scale setting as

gép(t=to)=oﬁ3
It is appropriate to determine the renormalized running coupling
— on large enough volumes
— at large enough flow time
— In the continuum limit



Running coupling on the lattice

Gradient flow transformation defines a renormalized coupling
Luescher arXiv:1006.4518

2 _ 1 _1 9)
gGF('u_W)_Wt (E@) t: flow time;
E(t):energy density
gé. is used for scale setting as

gép(t=to)=0ﬁ3

It is appropriate to determine the renormalized running coupling
— on large enough volumes
— at large enough flow time

_ in the continuum limit } use t-shift improved coupling



Running coupling : 4+8 flavors

g2 (u; my)
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Walking range can be tuned arbitrarily with m;
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Running coupling : 4+8 flavors
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Hyperscaling in mass-split models

In conformal systems Wilson RG considerations predict the
mass dependence of all dimensional quantities (hyperscaling)

If the scale changesas u—u'=u/b, b>1
the couplings run as

m() — m(u))=b’mmu) (increases)
§—8"
Any 2-point correlation function at large b scales as

C, (t:g,, 7, ) b 2HC, (t1b;g*, b i, ,b'miin,, W)

| =b PHC, (t/b;g*, b i, i, | i, L)
Since

C,(ece M ——  aM (it )" F, (m,/m,)

where F,(m,/m,) is a universal function



Hyperscaling in mass-split models

In conformal systems Wilson RG considerations predict the
mass dependence of all dimensional quantities (hyperscaling)

If the scale changesas u—u'=u/b, b>1
the couplings run as

m() — m(u))=b’mmu) (increases)
§—8"
Any 2-point correlation function at large b scales as

C, (t:g,, 7, ) b 2HC, (t1b;g*, b i, ,b'miin,, W)

=bh V1 C (t /B by i )

since

C,(ece M ——  aM,, oc(ii, )" F, (m,/m,)

where F,(m,/m,) is a universal function



Hyperscaling in mass-split models

In conformal systems Wilson RG considerations predict the
mass dependence of all dimensional quantities (hyperscaling)

If the scale changesas u—u'=u/b, b>1
the couplings run as

m() — m(u))=b’mmu) (increases)
§—8"
Any 2-point correlation function at large b scales as

C, (t:g,, 7, ) b 2HC, (t1b;g*, b i, ,b'miin,, W)

=bh V1 C (t /B by i, )

since
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Hyperscaling in mass-split models

Masses scale as
aM ;, o<(in, )"m F, (m,/m,)
Ratios are universal functions of m,/mn
MHl/MH2 =®,(m,/m,),
My | Fy=®,(m,/m,)

In the m,=0 chiral limit dimensionless ratios are independent of mn

If F is known, the rest of the spectrum is predicted - no more free
parameters

- True for light-light, heavy-light and heavy-heavy spectrum
- This is very different from QCD!



Corrections to scaling

The gauge coupling in Ni=12 runs slow -
g — g*is not a (very) good approximation, corrections are needed

Cheng, A.H.,Y. Liu,Petropoulos,
Schaich,PRD90 (2014) 014509

Ratios scale as
My | Fp =@, (m,/m,)(1+cym)?)

co depends on g2 and the observable, w is universal : both can be
determined from N+~=12 studies



Light spectrum

Ratios M, /F,_ are independent of my
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Light spectrum

Ratios M, /F,_ are independent of my
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A closer look
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where is the chiral limit ?



Other systems look similar .... 0/
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Other systems look similar ....

SU(3) with 2 sextet fermions LH CoIIaboratlon
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Other systems look similar ....

SU(3) with 2 sextet fermions LH CoIIaboratlon
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First hyperscaling tests in 4+8:

Ratios are universal functions of m//mn

a.Fr and a.my vs ms/mn
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Hyperscaling in m

Light-light and heavy-heavy vector in terms of Fx
Compare to 12 flavors (m,=mn) and PDG (m; << mn)
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Hyperscaling in m

Light-light and heavy-heavy vector in terms of Fx
Compare to 12 flavors (m,=mn) and PDG (m; << mn)
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- Heavy Mt / F increases but F

s finite in the chiral limit

- Heavy Mw is only 3 times heavier
than light Myt

- It could be accessible in experiments

- The 4¢+8h heavy spectrum is
not QCD-like
- QCD is not hyperscaling



Hyperscaling in m

Light-light and heavy-heavy pseudo scalar in terms of Fx
Compare to 12 flavors (m,=mn) and PDG (m; << mn)
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Hyperscaling in m

Light-light and heavy-heavy a1 in terms of F
Compare to 12 flavors (m,=mn) and PDG (m; << mn)
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Light-light and heavy-heavy pseudo scalar and a1 in terms of vector

mass
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Summary & Outlook

Mass-split models that are conformal in the UV, chirally broken in the IR
are best of both worlds:

» controlled walking

« anomalous dimension

* hyperscaling for all masses: predictive power!

* Higgs sector is based on the light/massless fermions

* tower of states few times heavier than Fr

 the heavy-light and heavy-heavy hadrons are also accessible
h-h, h-l spectrum are very different from QCD

Many interesting possibilities .... lattice studies can investigate
no-perturbative properties both specific and generic systems

Synergy between lattice and phenomenology
could benefit both areas
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