Deducing how Nuclear deformation affects proton and gamma transition rates.

MANCHESTER 1824

The University of Manchester

David M. Cullen

Research on transition rates in proton emitters as deformation changes across a shell:

[1] P. Möller et al., Phys. Rev. Lett. 97 (2006) 162502.

The University of Manchester

The Method:

Lifetime \Leftrightarrow Deformation

here > B(E2) => Q0 => β2

Needed an efficient differential plunger to use with proton tagging...

The University of Manchester

Contents lists available at SciVerse ScienceDirect Nuclear Instruments and Methods in Physics Research A

107
100
NUCLEAR
INSTRUMENTS
A METHODS
PHONOS
DEST ADOM
The second second
Address of a second second second

journal homepage: www.elsevier.com/locate/nima

A new differentially pumped plunger device to measure excited-state lifetimes in proton emitting nuclei

M.J. Taylor^{a,*}, D.M. Cullen^a, A.J. Smith^a, A. McFarlane^a, V. Twist^a, G.A. Alharshan^a, M.G. Procter^a,

Differential Plunger for Unbound Nuclear States. D.M. Cullen, SSNET 2016. S

D.M. Cullen, SSNET 2016.

DPUNS Proton Emitters studied so far...

Physics Letters B

CrossMark

M.G. Procter^{a,*}, D.M. Cullen^a, M.J. Taylor^a, G.A. Alharshan^a, L.S. Ferreira^b, E. Maglione^c, K. Auranen^d, T. Crahn^d, P.T. Creenlees^d, H. Jakobsson^d, R. Julin^d, A. Herráň^d, I. Konki^d

Many other isomer-tagged experiments in this region, cross sections $\sim 40 \mu b$ (2 weeks)

The University of Manchester

Lifetime Methodology

- Measuring experimental nuclear lifetimes to constrain theoretical calculations at and beyond the proton drip line.
- Quasi-particle model based on a deformed mean-field Woods-Saxon potential with spin-orbit interaction. Ferreira, Maglione Internat. Journal Modern Physics E15 (2006) 1789. Deduce wave functions for odd proton + core in adiabatic (strongly coupled to rotational core).

 Using this set of wave functions to calculate EM (gamma) and particle decay (proton) transition rates.

Theoretical Approach

Quasi-particle model generates excitation energy of states (compared with experimental level scheme)... and then extract wave functions.

Calculating Electromagnetic and Proton decays with a single set of wavefunctions D.M. Cullen, SSNET 2016.

MANCHESTER

New non-adiabatic calculations 2013:

Previous calculations were adiabatic with proton strongly coupled to the core.

New non-adiabatic calculations (Ferreira, Maglione) Procter et al. Phys Lett B 725 (2013) 79.

Calculate wave functions where core is softer which affects how the oddproton couples to the core.

Lifetime of deformed proton emitter, 113Cs

MANCHESTER

113Cs deformed proton emitter?

MANCHESTER

The University of Manchester

1824

113Cs Experimental setup (12 days)

MANCHESTER

The University of Manchester

113Cs Decay events in DSSD

MANCHESTER 1824

The University of Manchester

113Cs Gamma-ray spectra as function of distance

MANCHESTER

1824

D.M. Cullen, SSNET 2016.

113Cs Theoretical Calculations.

D.M. Cullen, SSNET 2016.

113Cs Theoretical excitation energies of states

MANCHESTER

The University of Manchester

Extract wave functions from model and use in EM and P decay calculations

Electromagnetic Transition Rates: using one set of wave functions.

$$T_{!} ! \frac{2!}{f} |\langle ! f_{f} | M (IL) | ! \rangle|^{2} ! (E) dE$$

Proton decay Transition Rates: using one set of wave functions.

113Cs Proton decay half-life versus deformation (non-adiabatic code).

D.M. Cullen, SSNET 2016.

1000T_{1/2}=16.9(1) μs $|T_p! \frac{2!}{f} | \langle ! _f^{*daughter} | M_{i} p \rangle | ! _i^{parent} \rangle |^2 ! (E) dE$ Half-life of Proton Emission (µs) 100 $3/2^{+}$ Experimental proton t1/2 10 $5/2^{+}$ (/2+ 0.10.2 0.10.3 0.4 β_2

Proton decay half-life in agreement with deformation, $\beta 2 = 0.23$

113Cs deformed proton emitter?

State	Measurement type	β_2
$(11/2^+)$	Excitation energy	~ 0.18
$(11/2^+)$	B(E2) calculation	0.22 - 0.26
$(15/2^+)$	Excitation energy	~ 0.15
$(15/2^+)$	B(E2) calculation	> 0.19
$(3/2^+)$	Proton Emission calculation	~ 0.22

Both particle and gamma decay rates fit best with experimental deformation of $\beta 2 = 0.2$, which compares well with Möller-Nix $\beta 2 = 0.207$. 113Cs really seems to be a deformed protons emitter.

The University of Manchester

Conclusions

- Measurement of experimental lifetimes of nuclear states at and beyond the proton drip line has helped define deformation in non-adiabatic theoretical nuclear code.
- 2 Computation of nuclear wave functions at these experimental deformations has allowed a better approach to understanding both proton and gamma decay rates in a simultaneous way.
- 3. Future radioactive + stable beam facilities + MARA with new TPEN will allow us to go further...

D.M. Cullen, SSNET 2016.

Triple-Foil Plunger for Exotic Nuclear States (TPEN)

Commission at JYFL in not too distant future...

D. Hodge,¹ D.M. Cullen,¹ M.J. Taylor,^{1,*} B.S. Nara Singh,¹ L.S. Ferreira,² E. Maglione,³
J.F. Smith,⁴ C. Scholey,⁵ P. Rahkila,⁵ T. Grahn,⁵ T. Braunroth,⁶ H. Badran,⁵ L.
Capponi,⁷ A. Girka,⁵ P.T. Greenlees,⁵ R. Julin,⁵ J. Konki,⁵ M. Mallaburn,⁸ O.
Nefodov,⁵ G.G. O'Neill,⁹ J. Pakarinen,⁵ P. Papadakis,⁵ J. Partanen,⁵ P. Ruotsalainen,⁵
M. Sandzelius,⁵ J. Sarén,⁵ M. Smolen,⁷ J. Sorri,⁵ S. Stolze,⁵ and J. Uusitalo⁵

¹School of Physics & Astronomy, Schuster Building,

The University of Manchester, Manchester M13 9PL, United Kingdom.

