

Pushing high-spin calculation to the extreme: Application of the Pfaffian algorithm in angular momentum projection

Yang Sun Shanghai Jiao Tong University, China

SSNET, Nov. 7-11, 2016

• • To be discussed ...

- Along the yrast line, rotational bands can now be studied up to very high spins extreme of angular momentum
 - Talks by M. Riley, I. Ragnarsson, A. Maj, ...
- Understanding the response of the nuclear system to fast rotation: pair-breaking (nn, pp, np), reorganization of collectivity, ...
- Multi-quasiparticle high-*K* isomers
 - Talks by Ph. Walker, A. K. Jain ...
- Understanding their formation, (unusual) decays are important for the study of superheavy elements, nuclear astrophysics, and applications

How to treat deformed nuclei with a shell-model concept

- Most nuclei in the nuclear chart are deformed. To describe a deformed nucleus, a spherical shell model has no advantages.
- One can start from a deformed basis by breaking the rotational symmetry spontaneously.
- Then apply angular-momentum-projection technique to recover the symmetry.
 - important correlations prepared through a good mean-field
 - intrinsic states classified with well-defined physical meanings
 - these states transformed to the laboratory frame
 - diagonalization performed in the (angular-momentum) projected basis

Y. Sun, Phys. Scr. 91 (2016) 043005

How to construct model space to describe fast rotations?

• Backbending in moment of inertia

• What do we need for *K*-isomer description?

- *K*-mixing It is preferable
 - to construct basis states with good angular momentum *I* and parity π , classified by *K*
 - to mix these K-states by residual interactions at given I and π
 - to use resulting wavefunctions to calculate electromagnetic transitions in shell-model framework
- A projected intrinsic state $\hat{P}_{MK}^{I} | \phi_{\kappa} \rangle$ can be labeled by K
 - With axial symmetry: $|\phi_{\kappa}\rangle$ carries *K*
- $E_{\kappa}^{I} = H_{\kappa\kappa}^{I} / N_{\kappa\kappa}^{I}$ defines a rotational band associated with the intrinsic *K*-state $|\phi_{\kappa}\rangle$
- Diagonalization = mixing of various *K*-states

Deformed basis vs spherical basis

- Rotational spectrum in ⁴⁸Cr
 - Exp. data:
 - Brandolini et al, NPA 642 (1998) 387
 - PSM:
 - Hara, Sun and Mizusaki, *PRL* 83 (1999) 1922
 - Deformed basis with a.-m. projection;
 Basis states ~ 50
 - pf-SM:
 - Caurier *et al.*, *PRL* 75 (1995) 2466
 - Conventional M-scheme spherical shell model; Basis states ~ 2 million

Model basis in terms of quasiparticle excitations

 $\left\{ |\Phi\rangle, a_{\nu_i}^{\dagger}a_{\nu_j}^{\dagger}|\Phi\rangle, a_{\pi_i}^{\dagger}a_{\pi_j}^{\dagger}|\Phi\rangle, a_{\nu_i}^{\dagger}a_{\nu_j}^{\dagger}a_{\pi_k}^{\dagger}a_{\pi_l}^{\dagger}|\Phi\rangle, \right.$ $a_{\nu_i}^{\dagger}a_{\nu_j}^{\dagger}a_{\nu_k}^{\dagger}a_{\nu_l}^{\dagger}|\Phi\rangle, a_{\pi_i}^{\dagger}a_{\pi_i}^{\dagger}a_{\pi_k}^{\dagger}a_{\pi_l}^{\dagger}|\Phi\rangle,$ $a_{\mathbf{v}_i}^{\dagger}a_{\mathbf{v}_i}^{\dagger}a_{\mathbf{v}_k}^{\dagger}a_{\mathbf{v}_m}^{\dagger}a_{\mathbf{v}_m}^{\dagger}|\Phi\rangle, a_{\pi_i}^{\dagger}a_{\pi_i}^{\dagger}a_{\pi_i}^{\dagger}a_{\pi_i}^{\dagger}a_{\pi_m}^{\dagger}a_{\pi_m}^{\dagger}|\Phi\rangle,$ $a_{\pi_i}^{\dagger}a_{\pi_i}^{\dagger}a_{\nu_k}^{\dagger}a_{\nu_l}^{\dagger}a_{\nu_m}^{\dagger}a_{\nu_n}^{\dagger}|\Phi\rangle, a_{\nu_i}^{\dagger}a_{\nu_i}^{\dagger}a_{\pi_k}^{\dagger}a_{\pi_l}^{\dagger}a_{\pi_m}^{\dagger}a_{\pi_n}^{\dagger}|\Phi\rangle,$ $a_{\pi_i}^{\dagger}a_{\pi_i}^{\dagger}a_{\nu_k}^{\dagger}a_{\nu_k}^{\dagger}a_{\nu_m}^{\dagger}a_{\nu_n}^{\dagger}a_{\nu_n}^{\dagger}a_{\nu_n}^{\dagger}|\Phi\rangle, a_{\pi_i}^{\dagger}a_{\pi_i}^{\dagger}a_{\pi_i}^{\dagger}a_{\pi_i}^{\dagger}a_{\nu_m}^{\dagger}a_{\nu_n}^{\dagger}a_{\nu_n}^{\dagger}a_{\nu_n}^{\dagger}|\Phi\rangle,$ $a_{\pi_i}^{\dagger}a_{\pi_i}^{\dagger}a_{\pi_i}^{\dagger}a_{\pi_i}^{\dagger}a_{\nu_m}^{\dagger}a_{\nu_n}^{$ $a_{\nu_i}^{\dagger}a_{\nu_i}^{\dagger}a_{\nu_k}^{\dagger}a_{\nu_l}^{\dagger}a_{\pi_m}^{\dagger}a_{\pi_n}^{\dagger}a_{\pi_o}^{\dagger}a_{\pi_o}^{\dagger}a_{\pi_o}^{\dagger}a_{\pi_o}^{\dagger}a_{\pi_r}^{\dagger}|\Phi\rangle \Big\}$ (1)

> L.-J. Wang *et al, Phys. Rev.* C 90 (2014) 011303(R) L.-J. Wang *et al, Phys. Rev.* C 93 (2016) 034322

Calculation of matrix elements for multi-quasiparticle states

• If a multi-quasiparticle state is written as $|\Phi_{\kappa}\rangle$, then the central task is to calculate $\mathcal{H}_{\kappa\kappa'} = \langle \Phi_{\kappa} | \hat{H}[\Omega] | \Phi_{\kappa'} \rangle$,

$$\mathcal{N}_{\kappa\kappa'} = \langle \Phi_{\kappa} | [\Omega] | \Phi_{\kappa'} \rangle,$$

with
$$[\Omega] = \frac{\hat{R}(\Omega)}{\langle \Phi | \hat{R}(\Omega) | \Phi \rangle}$$

• For example, a norm matrix element

$$\mathcal{N}_{\kappa\kappa'} = \langle \Phi | a_1 \cdots a_n [\Omega] a_{1'}^{\dagger} \cdots a_{n'}^{\dagger} | \Phi \rangle$$

can be written as combinations of

K. Hara, S. Iwasaki Nucl. Phys. A 332 (1979) 61

$$A_{\nu\nu'}(\Omega) \equiv \langle \Phi | [\Omega] a_{\nu}^{\dagger} a_{\nu'}^{\dagger} | \Phi \rangle = (V^*(\Omega) U^{-1}(\Omega))_{\nu\nu'},$$

$$B_{\nu\nu'}(\Omega) \equiv \langle \Phi | a_{\nu} a_{\nu'} [\Omega] | \Phi \rangle = (U^{-1}(\Omega) V(\Omega))_{\nu\nu'},$$

$$C_{\nu\nu'}(\Omega) \equiv \langle \Phi | a_{\nu} [\Omega] a_{\nu'}^{\dagger} | \Phi \rangle = (U^{-1}(\Omega))_{\nu\nu'},$$

Multi-quasiparticle computation using the Pfaffian algorithm

- Calculation of projected matrix elements usually uses the generalized Wick theorem
- A matrix element having n (n') qp creation or annihilation operators respectively on the left- (right-) sides of the rotation operator contains (n + n – 1)!! terms in the expression – a problem of combinatorial complexity
- Use of the Pfaffian algorithm:
 - L.M. Robledo, Phys. Rev. C 79 (2009) 021302(R).
 - G. Bertsch, L.M. Robledo, Phys. Rev. Lett. 108 (2012) 042505.
 - T. Mizusaki, M. Oi, Phys. Lett. B 715 (2012) 219.
 - M. Oi, T. Mizusaki, Phys. Lett. B 707 (2012) 305.
 - T. Mizusaki, M. Oi, F.-Q. Chen, Y. Sun, Phys. Lett. B 725 (2013) 175
 - Q.-L. Hu, Z.-C. Gao, Y. S. Chen, Phys. Lett. B 734 (2014) 162.

An example of ¹³⁴Nd

Calculated energy levels for yrast, yrare, and 2-qp K-bands in ¹³⁴Nd. Data: C. M. Petrache et al., Phys. Lett. B 387 (1996) 31

At very high spins, all states of different configurations rotate with same rotational frequency – a new collectivity?

Data: C. M. Petrache et al., Phys. Lett. B 387 (1996) 31

Major component for each configuration can be suggested

TABLE I. The K values and configurations of bands shown in the band diagram.

Band	K	Configuration		
2-qp 1 $\pi 1/2^{-550} \otimes 3/2$		$\pi 1/2^{-}[550] \otimes 3/2^{-}[541]$		
2-qp	2	$\pi 1/2^{-}[550] \otimes 5/2^{-}[532]$		
4-qp	1	$\nu 7/2^{-}[523]9/2^{-}[514] \otimes \pi 3/2^{-}[541]3/2^{-}[541]$		
6-qp	0, 2	$\nu 7/2^{-}[523]9/2^{-}[514] \otimes \pi 1/2^{-}[550]3/2^{-}[541]5/2^{-}[532]5/2^{-}[532]$		
8-qp	2	$v5/2^{-}[532]7/2^{-}[523]1/2^{-}[541]1/2^{-}[541] \otimes \pi 1/2^{-}[550]3/2^{-}[541]5/2^{-}[532]5/2^{-}[532]$		
10-qp	1	$v5/2^{-}[532]7/2^{-}[523]1/2^{-}[541]1/2^{-}[541] \otimes \pi 1/2^{-}[550]3/2^{-}[541]5/2^{-}[532]5/2^{-}[532] \otimes \pi 3/2^{+}[411]5/2^{+}[413] \otimes \pi 1/2^{-}[541]5/2^{-}[532]5/2^{-}[532] \otimes \pi 3/2^{+}[411]5/2^{+}[413] \otimes \pi 1/2^{-}[541]5/2^{-}[541]5/2^{-}[532] \otimes \pi 3/2^{+}[411]5/2^{+}[413] \otimes \pi 1/2^{-}[541]5/2^{-}[541]5/2^{-}[532]5/2^{-}[532] \otimes \pi 3/2^{+}[411]5/2^{+}[413] \otimes \pi 1/2^{-}[541]5/2^{-}[541]5/2^{-}[532] \otimes \pi 3/2^{+}[411]5/2^{+}[413] \otimes \pi 1/2^{-}[541]3/2^{-}[541]5/2^{-}[541]3/2^$		

Each basis state represents a real observable band !

Reduction of collectivity at very high spins

- While Mol keeps constant, B(E2) gradually decreases at high spins
- Successive band crossings among different quasiparticle states
- Structure changes in wave functions reduce B(E2) values

L.-J. Wang, F-Q Chen, T. Mizusaki, M. Oi, Y. Sun, *Phys. Rev.* C90 (2014) 011303(R)

Isomer transition rates

TABLE I. Comparison of calculated B(E2) values (in W.u.) for the isomeric states in ¹⁷⁶Hf with the available data taken from [40,42].

K_i^{π}	I_i	K_f^{π}	I_f	$B(E2; I_i \rightarrow I_f)$	
				Expt.	Calc.
6+	6	0^{+}	6	2.82×10^{-6}	1.93×10^{-9}
6+	6	0^{+}	4	3.16×10^{-7}	2.21×10^{-9}
14-	14	8-	12	5.33×10^{-7}	5.55×10^{-8}
22-	22	20-	20	4.8×10^{-3}	3.7×10^{-2}

Calculations for isomer transition rates including *K*-mixing can qualitatively distinguish allowed and *K*-forbidden transitions, but quantitative description leads to exploration of specific abnormal decays.

- Very different *E*2 decay rates from the two-quasineutron $K^{\pi} = 6^+$ isomers in N = 104 isotones ¹⁷²Er, ¹⁷⁴Yb, ¹⁷⁶Hf, and ¹⁷⁸W.
- Calculation assuming axially deformed basis cannot describe them.

	Exp.	Cal.
¹⁷² Er ¹⁷⁴ Yb ¹⁷⁶ Hf ¹⁷⁸ W	$-^{a}$ 7.2 × 10 ^{-11b} 3.16 × 10 ^{-7c} 4.67 × 10 ^{-4d}	$\begin{array}{l} 6.72 \times 10^{-11} \\ 4.10 \times 10^{-11} \\ 4.36 \times 10^{-11} \\ 5.64 \times 10^{-11} \end{array}$

Chen, Sun, Walker, Dracoulis, Shimizu, Sheikh, J. Phys. G 40 (2013) 015101

K-forbidden transition from 6⁺ isomers in N = 104 isotones

• Two-quasineutron $K^{\pi} = 6^+$ isomer in all N = 104 isotones has same configuration { $5/2^{-}[512]+7/2^{-}[514]$ }.

Chen, Sun, Walker, Dracoulis, Shimizu, Sheikh, J. Phys. G 40 (2013) 015101

• • • • K-forbidden transition from 6^+ isomers in N = 104 isotones

• Large variation of $K^{\pi} = 6^+$ isomer decay rate in N = 104 isotones originates from mixing with the γ -vibrational state.

• Three basic excitation modes (rotational, vibrational, single-particle) coexist and interact in the low-spin region!

Chen, Sun, Walker, Dracoulis, Shimizu, Sheikh, J. Phys. G 40 (2013) 015101

Stellar enhancement of decay rate

• A stellar enhancement can result from the thermal population of excited states

$$\lambda_{\beta} = \sum_{i} \left(p_{i} \times \sum_{j} \lambda_{\beta i j} \right)$$
$$p_{i} = \frac{(2I_{i} + 1) \times \exp(-E_{i} / kT)}{\sum_{m} (2I_{m} + 1) \times \exp(-E_{m} / kT)}$$

• Examples in the s-process

F. Kaeppeler, Prog. Part. Nucl. Phys. 43 (1999) 419

Also talk by A. Petrovici

Features of GT calculation by PSM

- As a shell model, PSM can be applied to any heavy, deformed nuclei without a size limitation.
- Its wavefunctions contain correlations beyond meanfield and are written in laboratory frame having definite good quantum numbers (angular-momentum and parity).
- A state-by-state evaluation of GT transition rates is computationally feasible, which enables calculations of GT transitions of excited states in a parent nucleus connecting to many states in a daughter.

Features of GT calculation by PSM

- Calculations of forbidden transitions require multishell model spaces, not possible for most of conventional shell models working in one-major shell bases. PSM is a multishell shell model, and can treat situations when forbidden transitions are dominated.
- Isomeric states belong to a special group of nuclear states because of their long half-lives, which could alter significantly the elemental abundances produced in nucleosynthesis. PSM is capable of describing the detailed structure of isomeric states.
 - A. Aprahamian and Y. Sun, Nature Phys. 1, 81 (2005)

Z.-C. Gao, Y. Sun, Y.-S. Chen, PRC 74 (2006) 054303

L.-J. Wang, Y. Sun, et al., to be published

Application in fundamental and nuclear astro-physics

- Energy spectrum of electron anti-neutrinos from nuclear reactors at Daya Bay, China
- An excess of ~10% of events within the 4-6 MeV region
- Tentative explanation: nuclear physics uncertainties in β-decays and fission yields

PRL 116 (2016) 061801

Anomaly in reactor neutrinos

- β-decays from about 10 neutron-rich fission products are important.
- Forbidden transitions are important.
- Current knowledge of β spectra from fission products is poor.
- Odd-mass nuclides are the main contributors.

A.A. Sonzogni et al., Phys. Rev. C 91 (2015) 011301(R)

CGS16 Shanghai, 2017

The 16th International Symposium on Capture Gamma-Ray Spectroscopy and Related Topics

18-22September, 2017

Shanghai Jiaotong University, Shanghai, China

The interactions

• Total Hamiltonian $\hat{H} = \hat{H}_0 + \hat{H}_{QP} + \hat{H}_{GT}$

• Quadrupole + monopole-pairing + quadrupole-pairing

$$\hat{H}_{QP} = -\frac{1}{2}\chi_{QQ}\sum_{\mu}\hat{Q}_{2\mu}^{\dagger}\hat{Q}_{2\mu} - G_M\hat{P}^{\dagger}\hat{P} - G_Q\sum_{\mu}\hat{P}_{2\mu}^{\dagger}\hat{P}_{2\mu}$$

• Charge-exchange (Gamow-Teller)

$$\hat{H}_{GT} = + 2\chi_{GT} \sum_{\mu} \hat{\beta}_{1\mu}^{-} (-1)^{\mu} \hat{\beta}_{1-\mu}^{+} - 2\kappa_{GT} \sum_{\mu} \hat{\Gamma}_{1\mu}^{-} (-1)^{\mu} \hat{\Gamma}_{1-\mu}^{+}$$
$$\hat{\beta}_{1\mu}^{-} = \sum_{\pi,\nu} \langle \pi | \sigma_{\mu} \tau_{-} | \nu \rangle c_{\pi}^{\dagger} c_{\nu}, \quad \hat{\beta}_{1\mu}^{+} = (-)^{\mu} (\beta_{1-\mu}^{-})^{\dagger}$$
$$\hat{\Gamma}_{1\mu}^{-} = \sum_{\pi,\nu} \langle \pi | \sigma_{\mu} \tau_{-} | \nu \rangle c_{\pi}^{\dagger} c_{\bar{\nu}}^{\dagger}, \quad \hat{\Gamma}_{1\mu}^{+} = (-)^{\mu} (\Gamma_{1-\mu}^{-})^{\dagger}$$

• Kuz'min & Soloviev, *Nucl. Phys.* A 486 (1988) 118

• • An example: ${}^{164}\text{Ho} - {}^{164}\text{Dy}$

• Parameters:

- ε₂ = 0.28
- G_{M,n} = 17.5/A = 0.107 MeV
- G_{M,p} = 22.7/A = 0.138 MeV
- $G_Q = 0.18 G_M$

Hara & Sun, IJMP E4 (1995) 637

- $\chi_{GT} = 23/A = 0.14 \text{ MeV}$
- $\kappa_{GT} = 7.5/A = 0.046 \text{ MeV}$

Kuz'min & Soloviev,

NPA 486 (1988) 118

