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INTRODUCTION

The Bohr-Mottelson (BM) Hamiltonian:
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@ The situation when the potential is v independent, is referred to as the
~-unstable.

@ The situation when the potential has a single localized minimum in ~, is referred
to as the v-stable.

@ The exact solvability of a model is directly related to the presence of an
underlying symmetry (U(5), SU(3), O(6), E(5)).

The integration measure of the BM Hamiltonian (volume element)

dV = B*dB x |sin 3| dyd$
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Modified through: a) Kinetic energy; b) Potential



INTERPLAY OF y-RIGID AND 7-STABLE COLLECTIVE EXCITATIONS

The usual five-dimensional kinetic operator of a v-soft Bohr Hamiltonian
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Qr(k=1,2,3) angular momentum projections on the principal axes of the intrinsic
reference frame.

The prolate ~-rigid kinetic operator
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@ s defined only in a three-dimensional space of the 3 shape variable, and only
two Euler angles. [Bonatsos, Lenis, Petrellis, Terziev, Yigitoglu, PLB 632 (2006) 238]
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A hybrid model is realized through a coherent coupling of these operators:
H=xTr+(1-x)Ts+V(B,7), x — 7-rigidity

@ The associated Hamiltonian acts in a mixed shape phase space with a
x-weighted integration metric: 3%dg — B4 2Xdg.
[Budaca&Budaca, JPG 42 (2015) 085103; EPJA 51 (2015) 126]




APPLICATION TO X(D) MODELS

In order to study critical point nuclei, the mixed Schrédinger equation is treated as in
the well known X (5) model [lachello, PRL 87 (2001) 052502], where an approximate
separation of 8 and ~-angular variables is achieved through
@ a small angle approximation
U @ an adiabatic decoupling of 3 and ~ shape fluctuations

Leaving aside the additive contribution of the - vibrational energy, the radial-like
equation for the B shape variable reads as
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Considering u(8) = { the mixing will take place between:

X (5) model x = 0 [lachello, PRL 87 (2001) 052502]
X (3) model x — 1 [Bonatsos, Lenis, Petrellis, Terziev, Yigitoglu, PLB 632 (2006) 238]

The boundary condition f(8w ) = 0 gives the 8 energy spectrum in terms of the s-th
zero x5, of the Bessel function J,, (zs,, /8w ), where
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X(4) CRITICAL POINT SYMMETRY

Bohr Hamiltonian solutions with ISW 3 potential are closely related to the 27¢ order
Casimir operator of the Euclidean group E(D) = Tp @4 SO(D):
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] F(B) = k2F(B), w—SO(D) quantum number

The S equation of the X (D) hybrid model can be easily brought to a similar form
bearing the correspondences:

3, x=1 = X(3)
Integer dimension D =5 —2x = ¢4, x =0.5 = new CPS X (4)
5, x=0 = X(5)

L=w=0,
L(L + 1) e [Bonatsos, McCutchan, Casten, PRL 101 (2008) 022501]
satisfied for
L=2w=2(3D78)
[Budaca&Budaca, PLB 759 (2016) 349]

w(w+D—-2) =

@ The fact that its 01 and 8+ states follow exactly the E(4) symmetry makes X (4)
model a Partial Dynamical Symmetry of type I. [Leviatan, PRL 98 (2007) 242502]
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Exact realisations of the E(4) Dynamical Symmetry

. 2185
16* —r2L85 T
+ 2105 " 20.95
333 10 : 16t —===
14 : a 17.56
3; \
. : 13.95
12* —1 H 12— ==
3 : 27! ,l
o H o *10 79
~ i 277(68)
2 H
o ! & * 777
2 H 261(43) P
: 505 . 515
. : oYsos  y__sn
B : 202(27) 0 —420
H B
4+ — ! 4 1274
17 ' 1498 N
' 100 : 2 100 0 158Er
[ 0" ——
9

Best X (4) candidates [Budaca&Budaca, PLB 759 (2016) 349]

Budaca&Budaca
PRC 94 (2016) 054306

8 1366
6 1064
& 800
2 553
o 32
B
132H



INDUCING ENERGY DEPENDENCE

The canonical form of the 3 equation for y-unstable case

f(B) = B*F(B)
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The energy spectra are determined from the quadratic equations:
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Physically meaning solutions:
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C

ng - quantum number of 3 excitations



CONSEQUENCES

@ Due to the energy dependence of the potential, the scalar product is modified as
Formanek, Lombard, Mares, Czech J. Phys. 54 (2004) 289

(1 —ap)B*dp, for HO
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in order to satisfy the continuity equation.

@ The linear energy dependence leads to a state independent integration metric
and to a coherent quantum theory (Special case).

@ Consequently, the model must have positive definite norms, averages and
density distribution:

Léﬁ’e)} gt>0, i=HO,C.
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This is exactly satisfied only if a < 0 and ¢ > 0 and approximately for a — oco.



ASYMPTOTIC LIMIT
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@ Only the asymptotic limits have a practical applicability for the collective nuclear

phenomena (ggi; > 2).

In the asymptotic limit of a and ¢ the corresponding solutions become fully scalable:

2
lim o = % (N + g) , Stffening Spherical Vibrator (SSV)
lim & = _ + 3im (N" +2), Asymptotic Energy Dependent Coulomb (AEDC)
c— 00 [ C



SSV NUMERICAL APPLICATION

The formula for E2 transition probabilities contains:
SO(5) Clebsh-Gordan coefficient dictates the angular momentum and seniority
selection rules.

integral over the 3 variable is numerically evaluated for successive high values of the
parameter a, retaining the value when a reliable degree of
convergence is achieved.
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Experimental realizations [Budaca, PLB 751 (2015) 39]
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AEDC NUMERICAL APPLICATION

The formula for E2 transition probabilities contains:

SO(5) Clebsh-Gordan coefficient dictates the angular momentum and seniority

selection rules.

integral over the 3 variable is numerically evaluated with asymptotic wave functions.

AEDC

Experimental realizations [Budaca, EPJA 52 (2016) 314]
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AEDC NUMERICAL APPLICATION

The formula for E2 transition probabilities contains:

SO(5) Clebsh-Gordan coefficient dictates the angular momentum and seniority
selection rules.

integral over the j variable is numerically evaluated with asymptotic wave functions.
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AEDC NUMERICAL APPLICATION

The formula for E2 transition probabilities contains:

SO(5) Clebsh-Gordan coefficient dictates the angular momentum and seniority
selection rules.

integral over the j variable is numerically evaluated with asymptotic wave functions.
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AEDC NUMERICAL APPLICATION

The formula for E2 transition probabilities contains:

SO(5) Clebsh-Gordan coefficient dictates the angular momentum and seniority
selection rules.

integral over the 3 variable is numerically evaluated with asymptotic wave functions.
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AEDC NUMERICAL APPLICATION

The formula for E2 transition probabilities contains:

SO(5) Clebsh-Gordan coefficient dictates the angular momentum and seniority
selection rules.

integral over the 3 variable is numerically evaluated with asymptotic wave functions.
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AEDC NUMERICAL APPLICATION

The formula for E2 transition probabilities contains:

SO(5) Clebsh-Gordan coefficient dictates the angular momentum and seniority
selection rules.

integral over the 3 variable is numerically evaluated with asymptotic wave functions.
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SUMMARY

@ The equal shape phase space mixing between ~-stable conditions of the X (5)
model and the ~-rigid ones of the X (3) solution, lead to a new four-dimensional
CPS called X (4).

X (4) exhibits properties of the Euclidean dynamical symmetry in four
dimensions, i.e. 0T and 87 states satisfy exactly the E(4) differential equation.
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@ New collective spectra and associated phenomenologies are obtained with
A energy dependent potentials in the mainframe of the Bohr-Mottelson model.

@ By considering a fast stiffening spherical harmonic oscillator potential one
attained an exactly solvable collective model associated to a near j3-rigid
spherical vibrator.

@ Similarly, an asymptotically increasing coupling constant for a v-unstable
Coulomb-like potential leads to a model associated to an extremely 3 soft
nucleus, whose wave functions are found to exhibit properties that pertain to
shape coexistence.

The solutions are parameter free

representing thus useful references along with the cornerstone dynamical
symmetries.




The kinetic energy of the collective Hamiltonian is a Laplacian operator in curvilinear
coordinates [Prochniak&Rohozinski, JPG 36 (2009) 123101]:

. K2 h2 1 _
AL B U 7iJsz 0

2 2 J ozl dxm’
Im

G, - symmetric positive-definite bitensor matrix
J = \/det(g) - Jacobian of the transformation {g} — {z'} = {B,7,61, 602,05}

9qr Oqi - .
Gim = Z 3l metric tensor of the transformation
k

@ In the general five-dimensional Bohr model, G;,,, ~ g;.,» and the kinetic operator
acquires the well known form of the Laplace-Beltrami operator.

@ This is no longer valid if we want to introduce the rigidity dependence.

@ The x dependent weighting factor arises naturally if we consider the following
mass tensor components:

B
Gy = O,I;ﬁm, GBB = B, G"/’Y: 177
—X
4Bp?
Grr = 7ﬁsin2'y;€, szvf—w,kzl,z&
1_X6k,3 3

K= Infinite inertial parameters for the conjugate momentum of the ~ shape variable
and the angular velocity ws = 63 around the third intrinsic axis in the ~-rigid limit.
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(a) The low-lying energy spectrum of ground and first two 3 excited bands
(b) and (c) Few AK = 0 B(E?2) transition probabilities
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The quadrupole deformation 82 calculated with
relativistic mean-field theory [Lalazissis&Raman,
ADNDT 71 (1999) 1] and the scaled ground state
average of S.



Everything OK in the asymptotic limit of the a parameter
Jim p(B) ~ 6(8 = Bo), Bo — 0.

d(x) - positive definite.
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(a) Ground state and = = 1 excited state 3 density probability in the
present and U (5) cases as a function of 3’. For U(5) 8’ = 3, while
for AEDC 8’ = 8/+/a.

(b) The same but for the first 8 excited state density probability.
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Energy [arbitrary units]
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@ Energy levels for the first few states are visualized together with their associated
state-dependent potentials v(e(N), 8) = v(N, B8) for a =100 (a) and a = 150 (b).
For clarity, the corresponding intersections are marked with expanded dots which
are linked by straight lines in order to simulate a smooth evolution.
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