

A self-consistent equation of motion multi-phonon method for even mass nuclei

František Knapp Charles University in Prague

N. Lo Iudice (INFN Napoli & Univ. Federico II) G. De Gregorio (INFN Napoli & Univ. Federico II) P. Veselý (ASCR Řež/Prague)

SSNET Workshop 2016 Shapes and Symmetries in Nuclei: From Experiment to Theory Gif-Sur-Yvette 7.-11. 11. 2016

Microscopic description of collective states

Microscopic description of collective states (PDR, GDR):
 RPA suitable for gross features NOT fine structure

How to get it?

Second RPA, Quasiparticle Phonon Model, Extended Theory of finite Fermi systems, Relativistic Quasiparticle Time Blocking Approximation, Particle Vibration Coupling, Shell Model...

Our framework : Equation of motion phonon method (EMPM)

- Mean-field calculation: HF(B), expansion to HO basis
- Excited states and responses: matrix formulation of (Q)TDA and EMPM
- Beyond 1-phonon → EMPM (subset of) 'complex' (2-phonon,...) configuration generalization of TDA

Equation of Motion Phonon Method

Goal: to diagonalize **general two-body** Hamiltonian in basis of TDA 1-phonon, 2-phonon states **all parts of two-body interaction and Pauli principle are taken into account**

Hamiltonian

Ingredients: Hamiltonian with 'realistic' 2-body NN interaction + phenomenological density dependent (DD) term

$$H = T_{int} + V. \quad T_{int} = \frac{1}{2m} \sum_{i} p_i^2 - T_{CM} \qquad V = V_{\chi} + V_{\rho}$$
$$V_{\rho} = \sum_{i < j} v_{\rho}(ij) \quad v_{\rho} = \frac{C_{\rho}}{6} (1 + P_{\sigma}) \rho(\frac{\vec{r}_1 + \vec{r}_2}{2}) \delta(\vec{r}_1 - \vec{r}_2)$$

 V_{χ} **NNLO_{opt}** (*Ekstrom et al., PRL 110, 192502 (2013)*) produces large gaps between shells \rightarrow GDR peaks are too high in energy.

similar to UCOM and SRG evolved NN interactions (*Hergert et al.*, *PRC* 83,064317(2011)) \rightarrow **DD interaction** V_{0} : missing (3-body) forces

Mean-field calculation: Hartree-Fock (Bogoljubov) Ground state and collective excitations (E1): Equation-of-motion Phonon Method

- bare NNLO_{opt} interaction, (DD interaction not included!)
- binding energies HF + MBPT(2)

- HF typically 40-50% of total BE, similar to UCOM, MBPT(2) overbinding (*Roth. et al. Phys. Rev. C* 73, 044312(2006))
- HF almost independent on $\hbar\omega$ up to Ni, dependence for MBPT(2)
- EMPM converged results for ${}^{16}O$ (N_{max} =12), not converged for ${}^{40}Ca$, ${}^{34}Si$, ${}^{48}Ca$,
- g.s. w.f. : typically 80% HF 20% 2-phon.
- EMPM smaller binding compared to MBPT(2)

- small radii at HF level
- 2-phonon (2p2h) contribution

improves it (0.02-0.05 fm), but still big discrepancy

De Gregorio et al., submitted to PRC.

Dipole strength in ²⁰⁸Pb

- phenomenological DD term \rightarrow compression of s.p. spectrum, increase of radius
- EMPM up to 2-phonons: subset of phonons with energy < 30 MeV

Skin thickness in ²⁰⁸Pb

- Radii and skin thickness sensitive to the strength of DD interaction.
- For C_{ρ} = 2000 MeV fm⁶ increase of skin thickness due to the g.s. correlations from 0.22 fm at HF to 0.31 fm in EMPM

Knapp et al. Phys. Rev. C 92, 054315 (2015).

Dipole strength in ²⁰⁸Pb

- EMPM predicts fragmented strength in the region 7-9 MeV whereas TDA, RPA not.
 - density of states reasonable but few states are too strong

3-phon. could cure this due to the suppression of 1-phon. component via strong 1- 3-phonon coupling

Dipole strength in ¹³²Sn

Similar picture to ²⁰⁸Pb. *Knapp et al. Phys. Rev. C 90, 014310 (2014)*

Dipole strength in ²⁰O

- quasiparticle version of EMPM.
- many low lying 1⁻ states: 2-phonon structure $0\hbar\omega$ coupled with $1\hbar\omega$ excitations

Summary

- ground state correlations in EMPM
 w.f typically 80% HF and 20 % 2-phon.
- radii: contribution from 2-phon. states very small
- selfconsistent description of E1 strength with realistic NN potential (NNLO_{opt} + DD force)
- lowest states 1⁻ : mixture of 1-phon. and 2-phon. components
- shape of GR: sum of many complicated states of type [Q₁⁺ x Q₂⁺] ¹⁻
 [2⁺ x 1⁻] ^{1-,} [4⁺ x 3⁻] ¹⁻
- 2pon.-1-phon. coupling responsible for rich low-lying 1⁻ spectrum \rightarrow detailed description of pygmy dipole mode, however, sensitive to s.p. details

odd particle systems \rightarrow next talk by **G. De Gregorio**

Future:

- Include 3-phonon sector (at least in non-interacting approximation)
- 3-body force (density dependent 2-body)
- Other ,realistic' forces (NNLO_{sat})