Microscopic Neutron Emission and Fission Rates in Compound Nuclei

Junchen Pei (peij@pku.edu.cn)

School of Physics, Peking University, Beijing

Collaborations:

F.R. Xu, W. Nazarewicz, G. Fann, M. Kortelainen, P. Schuck, Y. Zhu, Y.N. Zhang, X.Y. Xiong, K. Wang, N. Fei, And many others for discussions

- > Yi Zhu and J.C. Pei, Phys. Rev. C 90, 054316(2014).
- > Yi Zhu and J.C. Pei, Phys. Rev. C 94, 024329(2016).

SSNET Workshop, 2016.11, Gif sur Yvette, France

Introduction

- Overview of fission theory
- Thermal neutron emission rates
- Thermal fission rates

Summary

Motivation

Practical Interests: fast-neutron induced fission in reactors, fission in astrophysical environments, synthesis of superheavy nuclei.....

	40 Cd	In	Sn	Sb	JZ Te	55 I	Xe	
1	80	81	82	83	84	85	86	
	Hg	TI	Pb	Bi	Po	At	Rn	
Ī	112	113	114	115	116	117	118	
	Cn	Nh	FI	Мс	Lv	Ts	Og	

4 new elements named by IUPAC/IUPAP

fission in neutron start merger affect r-process abundance

Introduction

- The competition between neutron emission and fission is crucial for the survival probabilities of compound SHN.
- It is particularly an interesting issue for hot-fusion reactions

$$\sigma_s(E_{\text{c.m.}}) = \sigma_{cap}^{eff}(E_{\text{c.m.}})P_{CN}(E_{\text{c.m.}})W_s(E_{\text{c.m.}})$$

 The calculations of survival probabilities are usually based on Bohr-Wheeler statistical model

- Systematic survival probabilities have been calculated at optimal energies
 C.J. Xia, B.X. Sun, E.G. Zhao, S.G. Zhou, Sci. Chin. Phys., 2011
- However, statistical model relies on parameterized level densities, fission barriers, temperature dependence..... and many corrections and associated parameters are introduced

 Microscopic Finite-Temperature Hartree-Fock-Bogoliubov can describe the thermal equilibrium compound nuclei: quantum effects (superfluidity and shell effects) can self-consistently and gradually disappear

$$\rho(\mathbf{r}) = \sum_{i} [f_{i} | U_{i}(\mathbf{r})|^{2} + (1 - f_{i}) | V_{i}(\mathbf{r})|^{2}]$$
A. L. Goodman, NPA 352, 30 (1981).
J. L. Egido, et al., PRL 85, 26 (2000).

$$\tilde{\rho}(\mathbf{r}) = -\sum_{i} (1 - 2f_{i}) V_{i}(\mathbf{r}) U_{i}^{*}(\mathbf{r})$$

$$f_{i} = \frac{1}{1 + e^{(E_{i}/kT)}}$$

$$S = -k \sum_{i} [f_{i} \ln f_{i} + (1 - f_{i}) \ln(1 - f_{i})].$$

 Microscopic Finite-Temperature Skyrme Hartree-Fock-Bogoliubov can naturally describe the temperature dependent fission barriers and neutron gas at surfaces, without free parameters

F = E - TS Fission barriers in terms of free energy

Microscopic thermal fission barriers

J. C. Pei, W. Nazarewicz, J. A. Sheikh, and A. K. Kerman, PRL102, 192501 (2009).

- The temperature dependence of fission barrier heights are different for specific nuclei, due to quantum shell effects at high temperatures.
- Usually in experimental analysis, a damping factor is introduced

$$B_{f} = B_{LD} - \delta W e^{-\gamma_{D} E^{*}}$$

M.G. Itkis, Yu. Ts. Oganessian and V.I. Zagrebaev, Phys. Rev. C 65, 044602(2002).

From classical statistical to quantum statistical decays

1. The Bohr-Wheeler transition state theory(1939)

fission barriers don't change with temperatures depends on level densities at minimum and saddle points

 $\Gamma_{f} = \frac{1}{2 \pi} \frac{1}{\rho_{CN}(E)} \int_{0}^{E-B_{f}} \rho_{sad}(E-B_{F}-\varepsilon) d\varepsilon$ $\Gamma_{f} = \frac{T}{2 \pi} e^{-B_{f}/T}$

Level density at saddle point is not know

 2. The dynamic Kramers theory (related to Fokker-Planck)(1940) consider the influences of barrier widths and dissipation Strutinsky(1973) consistent or inconsistent with B-W without dissipation?

3. The Imaginary Free Energy method (ImF)

A general theory at all temperatures for metastable systems(chemical reactions) A more strict quantum treatment; fission barriers in free energy Connected to Kramers theory at high temperatures A transition temperature: from quantum tunneling to thermal decays

$$Z = \sum_{n} e^{-\beta z_n} = \sum_{n} e^{-\beta (E_n - i\hbar\gamma_n/2)} \qquad F = -(1/\beta) \ln Z$$

J.S. Langer, Ann. Phys. (N.Y.) 41, 108(1967).

I. Affleck, Phys. Rev. Lett 46, 388 (1981)

Our objective: microscopic study thermal fission rates (Im*F*) with the temperature dependent fission barriers and thermal neutron emission rates, and then survival probabilities, instead of conventional statistical models

A well-known challenge for nuclear many-body theory towards a predictive microscopic fission theory Review: N. Schunck, and L. M. Robledo, arXiv:1511.07517v2.

- Fission is a large amplitude collective motion
- Spontaneous fission has been extensively studied as a quantum tunneling process.
- Non-adiabatic studies: real-time dynamics only applicable after saddle points for fragment distributions (TD-HFB)
- Adiabatic DFT have to identify the neck and scission mechanism

Two essential inputs:

- Microscopic DFT studies of mass inertial parameters: cranking approximation, GCM, ATDHFB, local QRPA
- Microscopic DFT studies of fission barriers: large deformation properties(and beyond mean-field corrections); multi-dimensional potential energy surfaces(q₂₀, q₂₂, q₃₀)

WKB + Langevin dynamics

Spontaneous fission fragments

Jhilam Sadhukhan, Witold Nazarewicz, and Nicolas Schunck Phys. Rev. C 93, 011304(R) (2016)

TD-HFB

- Pairing is important: allow orbital changes (m,-m) - (m', -m')
- A large spherical fragment + a small deformed excited fragment
- Evolution time is longer than expected, not due to viscosity
- Nuclear forces are not sensitive

Aurel Bulgac, Piotr Magierski, Kenneth J. Roche, and Ionel Stetcu Phys. Rev. Lett. 116, 122504 (2016)

TD-GCM

$$i\hbar \frac{\partial}{\partial t}g(\boldsymbol{q},t) = \left[-\frac{\hbar^2}{2}\sum_{\alpha\beta}\frac{\partial}{\partial q_{\alpha}}B_{\alpha\beta}(\boldsymbol{q})\frac{\partial}{\partial q_{\beta}} + V(\boldsymbol{q})\right]g(\boldsymbol{q},t),$$
$$F(\xi,t) = \int_{t=0}^{t}dT\int_{\boldsymbol{q}\in\xi}\boldsymbol{J}(\boldsymbol{q},t)\cdot d\boldsymbol{S}.$$

- Adiabatic and no internal excitation
- Uncertainty of scission points
- Up to 2-dimensional and costly
- Suitable for fragment distribution

A number of libraries at the application level:

Level density; potential energy surface; shape before scission, Gaussian distribution, neck, potential curvature, dissipation ...

Very wide applications:

Fission fragments, TKE, neutron emission, gammy emission...

Thermal neutron gas

- In FT-HFB, the thermal neutron gas at surfaces are generated to produce equilibrium pressure
- The neutron gases are unphysical, and should be subtracted from the system selfconsistently
- The neutron emission (evaporation) rates is proportional to the gas density

Zhu, Pei, PRC, 90, 054316 (2014)

Thermal neutron emission rates

The level density parameter *a*, which can be dependent on mass regions, deformations, and temperatures

• A large box is required to get convergence for deformed cases.

 Self-consistent subtraction of gas is important for neutron-rich nuclei, large boxes and high temperatures.

Compare neutron emission rates

kT	FT-	HFB	Sta	t-M
(MeV)	n _{gas}	Г	$\Gamma(a)$	$\Gamma(b)$
²³⁸ U				
1.0	2.07×10^{-6}	3.69×10^{-3}	1.11×10^{-3}	1.15×10^{-3}
1.5	2.09×10^{-5}	4.57×10^{-2}	6.15×10^{-2}	2.96×10^{-2}
2.0	7.67×10^{-5}	1.94×10^{-1}	2.56×10^{-1}	1.55×10^{-1}
²⁵⁸ U				
1.0	1.67×10^{-5}	3.16×10^{-2}	1.73×10^{-2}	1.02×10^{-2}
1.5	7.82×10^{-5}	1.82×10^{-1}	2.04×10^{-1}	1.10×10^{-1}
2.0	$2.11\!\times\!10^{-4}$	5.70×10^{-1}	7.71×10^{-1}	4.10×10^{-1}
kT	FT-I	HFB	Stat	t-M
(MeV)	ngas	Г	$\Gamma(a)$	$\Gamma(b)$
$^{278}_{112}$ Cn				
1.0	5.53×10^{-7}	1.09×10^{-3}	1.36×10^{-4}	5.14×10^{-4}
1.5	8.84×10^{-6}	2.14×10^{-2}	2.76×10^{-2}	2.04×10^{-2}
2.0	3.76×10^{-5}	1.06×10^{-1}	2.21×10^{-1}	1.21×10^{-1}
292 1				
114 11				
114 Г 1.0	1.15×10^{-6}	3.69×10^{-3}	5.36×10^{-4}	9.04×10^{-4}
114F1 1.0 1.5	1.15×10^{-6} 1.51×10^{-5}	3.69×10^{-3} 3.79×10^{-2}	5.36×10^{-4} 3.13×10^{-2}	9.04×10^{-4} 2.64×10^{-2}

Zhu, Pei, PRC, 2014

Statistical model:

(a) use a level density a=A/13
(b) use a level density a=E/T²
from FT-HFB calculations (*a* connection)

- Generally agree with the statistical results, however, with detailed differences...
- Microscopic results without any parameters.
- Level density parameters are difficult to be determined experimentally

Compare neutron emission rates

Statistical model and microscopic model: level density a=E/T² from FT-HFB calculations (*a connection*)

$$\rho(E^*) = \frac{\sqrt{\pi} \exp(2\sqrt{aE^*})}{12a^{1/4}E^{*5/4}}$$

 $a = \frac{S}{2T}, a = \frac{E^*}{T^2}$ $a = \frac{S^2}{4E^*}$

Microscopic energy dependence

P. BONCHE et al, NPA, 1984

Thermal fission studies

- Thermal fission involves all the issues of the spontaneous fission
- Gradually evolve from quantum tunneling to statistical escape mechanism
- Wide application interests: fast-neutron induced fission in reactors, fission in astrophysical environments, hot-fusion of superheavy nuclei
- Conventional studied by Bohr-Wheeler transition state theory and later the dynamical Kramers theory
- We use the imaginary free energy theory that is more microscopic and general for all temperatures.

I. Affleck, Phys. Rev. Lett 46, 388 (1981).

Microscopic Finite-Temperature Skyrme-HF+BCS studies of fission barriers

- Temperature dependent fission barrier heights, pathways (Pei, et al, PRL, 2009)
- Temperature dependent fission barrier curvatures (frequency) are also important inputs but has rarely been discussed. (Zhu, Pei, PRC, 2016)

Mass parameters

Perturbative cranking approximations for mass parameters

 $M_{20} = \hbar^2 [\mathcal{M}^{(1)}]^{-1} [\mathcal{M}^{(3)}] [\mathcal{M}^{(1)}]^{-1}$

$$\mathcal{M}_{ij}^{(K)} = \frac{1}{2} \sum \frac{\langle 0|Q_i|\mu\nu \rangle \langle \mu\nu|Q_j|0\rangle}{(E_\mu + E_\nu)^K} (u_\mu v_\nu + u_\nu v_\mu)^2$$

Finite-Temperature cranking approximations for mass parameters

$$\begin{aligned} \mathcal{M}_{ij,T}^{(K)} &= \frac{1}{2} \sum < 0 |Q_i| \mu \nu > < \mu \nu |Q_j| 0 > \\ &\left\{ \frac{(u_\mu u_\nu - v_\mu v_\nu)^2}{(E_\mu - E_\nu)^K} \left[\tanh(\frac{E_\mu}{2kT}) - \tanh(\frac{E_\nu}{2kT}) \right] \right. \\ &\left. + \frac{(u_\mu v_\nu + u_\nu v_\mu)^2}{(E_\mu + E_\nu)^K} \left[\tanh(\frac{E_\mu}{2kT}) + \tanh(\frac{E_\nu}{2kT}) \right] \right\} \end{aligned}$$

Mass parameters

- As the pairing disappears, the mass parameters increase and become much irregular
- As the shell effects disappear, the mass parameters decrease and become like irrotational liquid

Thermal fission rates at all temperatures

Imaginary Free energy (ImF) decays

$$\Gamma = [2\sinh(\frac{1}{2}\beta\hbar\omega_0)]\frac{1}{2\pi\hbar}\int_0^{V_b} P(E)\exp(-\beta E))dE$$

The ImF formula at high temperatures

$$\Gamma = \frac{\omega_b}{2\pi} \frac{\sinh(\frac{1}{2}\beta\omega_0)}{\sin(\frac{1}{2}\beta\hbar\omega_b)} \exp(-\beta V_b)$$

The Kramers formula

$$\Gamma_{\rm Kramers} = \frac{\omega_0}{2\pi} \exp(-\beta V_b)$$

I. Affleck, Phys. Rev. Lett 46, 388 (1981).

Temperature dependent potential curvatures

• The ω_b has not been considered in Bohr-Wheeler formula

- Curvatures are now obtained microscopically
- Both ω_0 , ω_b are decreasing and play a role as dissipation

Microscopic fission lifetimes

Т		²⁶⁰ Fm		²⁴⁰ Pu
(MeV)	E^*	$T_f(\mathbf{s})$	E^*	$T_f(\mathbf{s})$
0.1	0.001	1.50×10^{-3}	0.002	2.55×10^{10}
0.2	0.11	1.59×10^{-6}	0.13	2.80×10^{-3}
0.3	0.83	3.67×10^{-10}	0.81	4.50×10^{-8}
0.4	2.67	1.94×10^{-12}	2.43	3.48×10^{-10}
0.5	5.67	7.87×10^{-14}	4.85	9.08×10^{-11}
0.6	8.63	3.48×10^{-15}	7.02	8.17×10^{-12}
0.75	10.91	2.07×10^{-16}	11.19	9.61×10^{-13}

- Nuclei with different curvatures can have different critical temperatures: $T_{c} = \omega_{b}/2\pi$
- For Pu240, with a very low critical temperature and lifetime deceases very rapidly. Low temperature ImF formula is not suitable.

Microscopic fission lifetimes

-						
240 Pu			²⁶⁰ Fm		Т	
	$T_f(\mathbf{s})$	E^*	$T_f(\mathbf{s})$	E^*	(MeV)	
-	3.25×10^{-8}	0.81	1.90×10^{-9}	0.83	0.3	
	2.92×10^{-11}	2.43	4.90×10^{-12}	2.67	0.4	
	4.51×10^{-13}	4.85	9.03×10^{-14}	5.67	0.5	
	5.51×10^{-15}	7.02	1.85×10^{-15}	8.63	0.6	
	8.13×10^{-17}	11.19	1.11×10^{-17}	10.91	0.75	
	1.12×10^{-18}	21.22	4.72×10^{-19}	23.92	1.0	
	9.14×10^{-20}	35.42	6.01×10^{-20}	38.38	1.25	
	3.27×10^{-20}	54.40	2.29×10^{-20}	58.80	1.5	
-	²⁹² Fl		^{278}Cn		Т	
-	$T_f(\mathbf{s})$	E^*	$T_f(\mathbf{s})$	E^*	(MeV)	
-	1.01×10^{-13}	5.82	3.54×10^{-17}	4.70	0.5	
	1.25×10^{-16}	14.1	3.56×10^{-19}	11.25	0.75	
	1.66×10^{-18}	24.27	2.32×10^{-20}	23.17	o 1.0	
	2.09×10^{-19}	40.22		40.17	1.25	
	7.33×10^{-20}	69.01		62.34	1.5	

- Large difference in low temperatures; Small differences in high temperatures
- Quantum effects are important at low temperatures
- Large survival probabilities are obtained for 292FI

Thermal fission: a transition

- Fission lifetimes decrease very rapidly at low excitation energies
- A smooth connection between low-T formula and high-T formula.
- The applicability of low-T formula is slightly higher than T_c
- Kramers formula overestimate fission lifetime at low temperatures

²⁷⁴Hs

Experiment Survival probability

Large experimental survival probability of 274Hs has been given at 63 MeV, R.Yanez, et al., PRL 112, 152702 (2014)

Statistical model: **23%** Experiments: **89%**, large dissipation?

Identify the prescission and postscission components of the neutron multiplicities in each system Mg26+Cm248

Our calculations: ~30%

Many questions about this experimental data

²¹⁰Po

Uncertainties and open questions

Significant model dependences at spontaneous fission

Summary

- A roadmap towards microscopic descriptions of induced fission rates, based on temperature dependent fission barrier heights and curvatures, and mass parameters.
- Neutron emission rates in deformed nuclei is obtained, agree with statistical model
- Now we can derive the microscopic survival probability of compound superheavy nuclei without free parameters for the first time.

Outlook:

- Thermal fission in multi-dimensional deformation spaces,
- Fission lifetime and fragment distributions together
- We have dropped out the viscosity and dissipation which can be important at high temperatures.

Collaborations:

F.R. Xu, W. Nazarewicz, G. Fann, M. Kortelainen, P. Schuck, Y. Zhu, Y.N. Zhang, X.Y. Xiong, K. Wang, N. Fei..... And many others for discussions

Thank you for your attention !