

Nov 6<sup>th</sup> – 12<sup>nd</sup>, 2016, Orsay, France

**SSNET Workshop 2016** 

# Descriptions of triaxial band structures in <sup>133</sup>La

## Qibo Chen(陈启博) School of Physics, Peking University

**Reference:** 

Triaxial-band structures, chirality and magnetic rotation in <sup>133</sup>La

C. M. Petrache,<sup>1</sup> Q. B. Chen,<sup>2</sup> S. Guo,<sup>1,\*</sup> A. D. Ayangeakaa,<sup>3,†</sup> U. Garg,<sup>3</sup> J. T. Matta,<sup>3,‡</sup> B.
K. Nayak,<sup>3,§</sup> D. Patel,<sup>3,¶</sup> J. Meng,<sup>2</sup> M. P. Carpenter,<sup>4</sup> C. J. Chiara,<sup>4,5,\*\*</sup> R. V. F. Janssens,<sup>4</sup>
F. G. Kondev,<sup>6</sup> T. Lauritsen,<sup>4</sup> D. Seweryniak,<sup>4</sup> S. Zhu,<sup>4</sup> S. S. Ghugre,<sup>7</sup> and R. Palit<sup>8,9</sup>

### Accepted by PRC@20161107

## Introduction

- **Theoretical framework**
- Results and discussion
- **Summary**

## □ Introduction

- **Theoretical framework**
- Results and discussion
- **Summary**

Chirality

 The investigation of chirality in atomic nuclei is one of the hottest topics in nuclear physics.



## Experimental progress

 So far, more than 40 chiral doublet bands have been found in the A~80, 100, 130, and 190 mass regions. *Meng&Zhang, JPG 37, 064025 (2010); Meng&Chen&Zhang, IJMPE 23, 1430016 (2014); Meng&Zhao, PS 91, 053008 (2016)*



# Experimental progress

#### • In the past three years, 6 papers were published at PRL!

| PRL 110, 172504 (2013)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PHYSICAL REVIEW LETTERS                                                                                                                                                                                                                                                                                                   | week ending<br>26 APRIL 2013                                               | PRL 112, 052501 (2014) PHYSICAL REVIEW LETTERS 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | week ending<br>FEBRUARY 2014                                                         |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|--|
| <b>Evidence for Multiple Chiral Doublet Bands in <sup>133</sup>Ce</b><br>A. D. Ayangeakaa, <sup>1</sup> U. Garg, <sup>1</sup> M. D. Anthony, <sup>1</sup> S. Frauendorf, <sup>1</sup> J. T. Matta, <sup>1</sup> B. K. Nayak, <sup>1,*</sup> D. Patel, <sup>1</sup><br><u>O. B. Chen (陈启博)</u> , <sup>2</sup> S. Q. Zhang (张双全), <sup>2</sup> P. W. Zhao (赵鼎巍), <sup>2</sup> B. Qi (亓斌), <sup>3</sup> J. Meng (孟杰), <sup>2,4,5</sup><br>R. V. F. Janssens, <sup>6</sup> M. P. Carpenter, <sup>6</sup> C. J. Chiara, <sup>6,7</sup> F. G. Kondev, <sup>8</sup> T. Lauritsen, <sup>6</sup> D. Seweryniak, <sup>6</sup> S. Zhu, <sup>6</sup><br>S. S. Ghugre, <sup>9</sup> and R. Palit <sup>10,11</sup> |                                                                                                                                                                                                                                                                                                                           |                                                                            | <b>Candidates for Twin Chiral Bands in</b> <sup>102</sup> <b>Rh</b><br>D. Tonev, <sup>1</sup> M. S. Yavahchova, <sup>1</sup> N. Goutev, <sup>1</sup> G. de Angelis, <sup>2</sup> P. Petkov, <sup>1</sup> R. K. Bhowmik, <sup>3</sup> R. P. Singh, <sup>3</sup><br>S. Muralithar, <sup>3</sup> N. Madhavan, <sup>3</sup> R. Kumar, <sup>3</sup> M. Kumar Raju, <sup>4</sup> J. Kaur, <sup>5</sup> G. Mohanto, <sup>3</sup> A. Singh, <sup>5</sup><br>N. Kaur, <sup>5</sup> R. Garg, <sup>6</sup> A. Shukla, <sup>7</sup> Ts. K. Marinov, <sup>1</sup> and S. Brant <sup>8</sup>                                                                                                                                                     |                                                                                      |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 201                                                                                                                                                                                                                                                                                                                       | 13-04-24                                                                   | 2014-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2-03                                                                                 |  |  |
| PRL 113, 032501 (2014)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PHYSICAL REVIEW LETTERS                                                                                                                                                                                                                                                                                                   | week ending<br>18 JULY 2014                                                | PRL 112, 202502 (2014) PHYSICAL REVIEW LETTERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | week ending<br>23 MAY 2014                                                           |  |  |
| Multiple (<br>I. Kuti, <sup>1</sup> Q. B. Ch<br>K.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Chiral Doublet Bands of Identical Configuration in<br>ten, <sup>2</sup> J. Timár, <sup>1</sup> D. Sohler, <sup>1</sup> S. Q. Zhang, <sup>2</sup> Z. H. Zhang, <sup>2</sup> P. W. Zh<br>Starosta, <sup>3</sup> T. Koike, <sup>4</sup> E. S. Paul, <sup>5</sup> D. B. Fossan, <sup>6</sup> and C. Vaman <sup>6</sup><br>201 | n <sup>103</sup> Rh<br>mao, <sup>2</sup> J. Meng, <sup>2</sup><br>14-07-14 | Resolution of Chiral Conundrum in <sup>106</sup> Ag: Doppler-Shift Lifetime Investiga<br>E. O. Lieder, <sup>1,2</sup> R. M. Lieder, <sup>1,*</sup> R. A. Bark, <sup>1</sup> Q. B. Chen <sup>3</sup> S. Q. Zhang, <sup>3</sup> J. Meng, <sup>3,4,5</sup> E. A. Lawrie, <sup>1</sup> J.<br>S. P. Bvumbi, <sup>1</sup> N. Y. Kheswa, <sup>1</sup> S. S. Ntshangase, <sup>1</sup> T. E. Madiba, <sup>1</sup> P. L. Masiteng, <sup>1</sup> S. M. Mullins, <sup>1</sup> S.<br>P. Papka, <sup>1</sup> D. G. Roux, <sup>6</sup> O. Shirinda, <sup>1</sup> Z. H. Zhang, <sup>3</sup> P. W. Zhao, <sup>3</sup> Z. P. Li, <sup>7</sup> J. Peng, <sup>8</sup> B. Qi, <sup>9</sup> S. Y.<br>Z. G. Xiao, <sup>10,11</sup> and C. Xu <sup>3</sup> | <b>tion</b><br>J. Lawrie, <sup>1</sup><br>Murray, <sup>1</sup><br>Wang, <sup>9</sup> |  |  |
| PRL <b>116</b> , 112501 (2016)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PHYSICAL REVIEW LETTERS                                                                                                                                                                                                                                                                                                   | week ending<br>18 MARCH 2016                                               | 2014-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5-20                                                                                 |  |  |
| Evidence for<br>C. Liu (刘晨), <sup>1</sup> S. Y. Wang (王                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | or Octupole Correlations in Multiple Chiral Double<br>守宇), <sup>1,†</sup> R. A. Bark, <sup>2</sup> S. Q. Zhang (张双全), <sup>3,‡</sup> J. Meng (孟杰), <sup>3,4,5</sup>                                                                                                                                                       | et Bands<br><sup>5.§</sup> B. Qi (元斌), <sup>1</sup> P. Jones, <sup>2</sup> | PRL 112, 202503 (2014) PHYSICAL REVIEW LETTERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | week ending<br>23 MAY 2014                                                           |  |  |
| 5. n.i. wyngaarol, J. Zhâo (<br>L. Liu (刘雷), <sup>1</sup> Z. Q. Li ( <sup>2</sup><br>Q. B. Chen (陈启博), <sup>3</sup> Z. G. :<br>J. Easton, <sup>2,10</sup> K. Juhász<br>S. N. T. Majola, <sup>2,13</sup> S. M. M<br>B. M. Nyakó, <sup>14</sup> J                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [20] [20] [20] [20] [20] [20] [20] [20]                                                                                                                                                                                                                                                                                   |                                                                            | Exploring the Origin of Nearly Degenerate Doublet Bands in <sup>106</sup> Ag<br>N. Rather, <sup>1</sup> P. Datta, <sup>2,*</sup> S. Chattopadhyay, <sup>1</sup> S. Rajbanshi, <sup>1</sup> A. Goswami, <sup>1</sup> G. H. Bhat, <sup>3</sup> J. A. Sheikh, <sup>3</sup> S. Roy, <sup>4</sup><br>R. Palit, <sup>4</sup> S. Pal, <sup>4</sup> S. Saha, <sup>4</sup> J. Sethi, <sup>4</sup> S. Biswas, <sup>4</sup> P. Singh, <sup>4</sup> and H. C. Jain <sup>4</sup>                                                                                                                                                                                                                                                                |                                                                                      |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 201                                                                                                                                                                                                                                                                                                                       | 16-03-14                                                                   | 2014-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5-20                                                                                 |  |  |

• Searching for more chiral candidates and novel phenomena are still hot topics.

In this talk, new experimental results on <sup>133</sup>La will be reported.

# Theoretical progress

#### • Tilted axis cranking (TAC)

See Professor Meng's talk for details

- **Single-j model** *Frauendorf\_Meng1997NPA;*
- **Hybird Woods-Saxon and Nilsson model** *Dimitrov2000PRL*
- Skyrme Hartree-Fock model Olbratorwski2004PRL, 2006PRC
- **Covariant density functional theory (CDFT)** *Madokoro2000PRC* 
  - **TAC + RPA** Mukhopadhyay2007PRL; Almehed2011PRC
  - TAC + Collective Hamiltonian Chen2013PRC, 2016PRC

### Triaxial PRM

- One-particle-one-hole PRM Frauendorf\_Meng 1997NPA; Koike2004PRL; Peng2003PRC; Qi2009PRC, CPL2010; Chen2010PRC; Zhang2016CPC
- Two quasiparticles PRM Starosta2002PRC; Koike2003PRC; Zhang2007PRC; Wang2007PRC, 2008PRC, 2010PRC; Qi2011CPL; Lawrie 2008PRC, 2010PLB;
  - **n-particle-n-hole PRM** *Qi2009PLB*, 2011PRC;
    - **PRM + CDFT** Ayangeakaa2013PRL; Lieder2014PRL; Kuti2014PRL; Liu2016PRL

In this talk, the PRM+CDFT will be applied to describe the newly observed triaxial band structure in <sup>133</sup>La.

### Introduction

- **Theoretical framework**
- Results and discussion
- **Summary**

## Particle rotor model



# Covariant density functional theory

• Energy density functional (*point-coupling*): See also Professor Vretenar's talk

- **Local densities**  $(\rho)$  & currents (j); S: scalar; V: vector; T: isovector
- **a**,  $\beta$ ,  $\gamma$ ,  $\delta$  denote ~11 parameters, like: PC-F1, DD-PC1, PC-PK1, .....

Burvenich2002PRC, Niksic2008PRC, Zhao2010PRC

Constraint calculation on quadrupole moment:

**(
$$\beta$$
,  $\gamma$ ) constraint:**  $\delta \left[ \langle \hat{H} \rangle + \sum_{\alpha,\beta} C_{2\mu} (\langle \hat{Q}_{2\mu} \rangle - q_{2\mu})^2 \right] = 0$ 

 $\beta^2$  constraint:

$$\delta\left[\langle \hat{H} \rangle + C(\langle \hat{Q}_{20} \rangle^2 + 2\langle \hat{Q}_{22} \rangle^2 - \mu)^2\right] = 0$$

$$q_{20} = \sqrt{5/16\pi} \langle \hat{Q}_{20} \rangle$$
$$q_{22} = \sqrt{15/32\pi} \langle \hat{Q}_{22} \rangle$$
$$\hat{Q}_{20} = 2z^2 - x^2 - y^2$$
$$\hat{Q}_{22} = x^2 - y^2$$

 $\sqrt{2q_{22}}$ 

$$\beta = \frac{4\pi}{3AR_0^2} \sqrt{q_{20}^2 + 2q_{22}^2}, \quad \gamma = \arctan$$

### Introduction

- **Theoretical framework**
- **Results and discussion**
- **Summary**

## **Results and discussion**

### **Experimental information**

- The experiment was performed by our experimental collaborators
   Facility: Two separate experiments were performed using the ATLAS superconducting linear accelerator facility at Argonne National Laboratory (Nov. 2008, Aug. 2011).
- **Reaction:** <sup>116</sup>Cd(<sup>22</sup>Ne, p4n) with a bombarding energy of 112 MeV.
- **Target:** (1) a foil of isotopically enriched <sup>116</sup>Cd, sandwiched between a 50  $\mu$ g/cm<sup>2</sup> thick front layer of Al and a 150  $\mu$ g/cm<sup>2</sup> Au backing; (2) a target of the same enrichment and thickness but evaporated onto a 55  $\mu$ g/cm<sup>2</sup> thick Au foil.
- **Detector: Gammasphere array, 101 (88) HPGe detectors.**
- **Event:** A combined total of approximately  $4 \times 10^9$  four- and higher-fold coincidence events were accumulated during the two experiments.

See details also at Ayangeakaa2013PRL, 2016PRC (<sup>133</sup>Ce), Petrache2016PRC (<sup>134</sup>Ce)

## Level scheme



## Quasiparticle alignments



## **Results and discussion**

### **Triaxial RMF calculations**

• The constrained triaxial relativistic mean field calculations have been performed to obtain the potential energy surface in the  $\beta$ - $\gamma$  plane and potential energy curve along  $\beta$ -direction. *Meng2006PRC* 

#### • Numerical details:

- Interaction parameter: PC-PK1; *Zhao2010PRC*
- Harmonic oscillator shells:  $N_f = 12$ ;
- Paring correlations are neglected.

## **PES** and **SPE**



- Potential energy surface (PES)
  - Minimum:  $(\beta = 0.18, \gamma = 16^{\circ})$ .
  - A moderate γ softness.

Single particle energy level (SPE)
 ■ Ground state: π(1g<sub>7/2</sub>)<sup>-1</sup>.

# Potential energy curve

#### • Potential energy curve and configuration information

Adiabatic cal. (circles) & configuration-fixed cal. (lines)



The deformation parameters will be input to the PRM.

| State        | $E_{\mathbf{x}}(\mathrm{MeV})$ | $(eta_2,\gamma)$       | Configuration        | $\pi$ | Band   |
|--------------|--------------------------------|------------------------|----------------------|-------|--------|
| А            | 0.00                           | $(0.18, 16.0^{\circ})$ | $\pi g_{7/2}^{-1}$   | +     | Q4     |
| В            | 0.85                           | $(0.21, 16.7^{\circ})$ | $\pi h_{11/2}^{1'}$  | —     | Q1, Q2 |
| $\mathbf{C}$ | 5.44                           | $(0.33, 40.8^\circ)$   | $\pi p_{3/2}^{-1}$   | _     |        |
| D            | 5.55                           | $(0.37, 41.6^{\circ})$ | $\pi h_{11/2}^{1/2}$ | _     |        |

| State | $E_{\rm x}({ m MeV})$ | $(eta_2,\gamma)$       | Active nucleon configuration                                                                     | π | Band            |
|-------|-----------------------|------------------------|--------------------------------------------------------------------------------------------------|---|-----------------|
| a     | 1.43                  | $(0.20, 29.5^{\circ})$ | $\pi h^1_{11/2} \otimes  u(s_{1/2}, d_{3/2})^{-1} h^{-1}_{11/2}$                                 | + |                 |
| b     | 1.52                  | $(0.16, 23.2^{\circ})$ | $\pi d_{5/2}^1 \otimes  u h_{11/2}^{-2}$                                                         | + | D1, D2          |
| с     | 2.74                  | $(0.20, 19.2^{\circ})$ | $\pi h_{11/2}^{1'} \otimes  u h_{11/2}^{-2}$                                                     | - | D4-low          |
| d     | 2.86                  | $(0.21, 17.4^{\circ})$ | $\pi d_{5/2}^1 h_{11/2}^2$                                                                       | + |                 |
| е     | 3.70                  | $(0.21, 26.2^{\circ})$ | $\pi d_{5/2}^1 h_{11/2}^2 \otimes  u(s_{1/2}, d_{3/2})^{-1} h_{11/2}^{-1}$                       | _ |                 |
| f     | 4.67                  | $(0.26, 13.2^{\circ})$ | $\pi d_{5/2}^1 h_{11/2}^2 \otimes \nu(s_{1/2}, d_{3/2})^{-1} h_{11/2}^{-2} (f_{7/2}, h_{9/2})^1$ | - | Q10             |
| g     | 4.71                  | $(0.19, 27.3^{\circ})$ | $\pi d_{5/2}^1 h_{11/2}^2 \otimes  u h_{11/2}^{-2'}$                                             | + | Q8, Q9          |
| h     | 6.30                  | $(0.21, 18.8^{\circ})$ | $\pi h^3_{11/2} \otimes  u(s_{1/2}, d_{3/2})^{-1} h^{-1}_{11/2}$                                 | + |                 |
| i     | 7.23                  | $(0.20, 20.5^{\circ})$ | $\pi h_{11/2}^3 \otimes  u h_{11/2}^{-2}$                                                        | - | $D4	ext{-high}$ |

## **Results and discussion**

## Triaxial PRM calculations

• Numerical details of bands D1, D2 and Q8, Q9

- Deformation parameters: taken from CDFT.
- Irr. MOI:  $\mathcal{J}_0 = 19 \hbar^2 / \text{MeV}$  and  $\mathcal{J}_0 = 41 \hbar^2 / \text{MeV}$ .

**Coriolis attenuation factor:**  $\xi$ =0.96 and 0.94.

MOI are adjusted to the energy spectra

#### • Numerical details of band D4

- Deformation parameters: taken from CDFT.
- Irr. MOI:  $\mathcal{J}_0 = 25 \ \hbar^2 / \text{MeV}$  and  $\mathcal{J}_0 = 20 \ \hbar^2 / \text{MeV}$ .

## Bands D1, D2 and Q8, Q9



#### Bands D1, D2

- The experimental energy spectra and B(M1)/B(E2) of bands D1, D2 are well reproduced.
- The energy differences between the doublets are small. Their B(M1)/B(E2) values are similar.
   Chiral doublet bands

### Bands Q8, Q9

They are quadrupole bands. The experimental energy spectra is well reproduced.

# Bands D1, D2 and Q8, Q9



#### Bands D1, D2

The angular momenta of bands D1 and D2 are similar. The rotor and proton mainly align along the i- and s-axes. The neutron holes are significant the l-axis and s-axis. This leads to the 3D chiral geometry.

### • Bands Q8, Q9

The angular momenta mainly along the i-axis.

A transition occurs from an aplanar rotation to a principal axis one.

# Band D4



### Band D4

- The experimental energy spectra of band D4 is reproduced respectively by 3-qp and 5-qp configuration.
- B(M1) decreases while B(E2) increases at low spin part. B(M1) is large while B(E2) is small.

Magnetic rotational band: lifetime



## Band D4



#### • Band D4

- Low: the rotor lies in the i-s plane. The proton, and the neutron mainly align along the s-, and l-axis. This leads an aplanar rotation but very close to l-s plane.
- High: obvious odd-even staggering, corresponding to the signature splitting of energy spectra.

A transition occurs from a planar rotation to a principal axis one.

### Introduction

- **Theoretical framework**
- Results and discussion
- **G** Summary

# Summary

- With the experimental results of <sup>133</sup>La by our collaborators, detailed calculations using constrained CDFT and PRM have been performed to assign the configurations for the observed bands, and understand their structures.
- The nearly degenerated bands D1 and D2 is interpreted as chiral doublet bands. The dipole band D4 is interpreted as magnetic rotational band. At their high spin part, transitions from tilted axis rotation to principal axis rotation are found.
- In the furfure, the lifetime measurement is highly expected for these bands to reach a definitive conclusion.

Acknowledgments

Special thanks to Professor C. M. Petrache for his lots of valuable discussions and kind invitation!

Also thanks to A. D. Ayangeakaa, M. P. Carpenter, C. J. Chiara, U. Garg, S. S. Ghugre, S. Guo, R. V. F. Janssens, F. G. Kondev, T. Lauritsen, J. T. Matta, J. Meng, B. K. Nayak, R. Palit, D. Patel, D. Seweryniak, and S. Zhu for the fruitful discussions.

Thank you!