Chiral symmetry in the Tl isotopes

Elena A Lawrie iThemba LABS, South Africa

Left-

Right-

P.L. Masiteng, J. Ndayishimye, O. Shirinda, A.A. Pasternak[#], J.J. Lawrie,
J.L. Easton, R.A. Bark, S.P. Bvumbi, B.G. Carlsson, T.R.S. Dinoko, P. Jones,
R. Lindsay, F. Komati, J. Kau, N.Y. Kheswa, E.O. Lieder, R. Lieder, T.E.
Madiba, P. Maine, S.M. Maliage, I. Matamba, S.N.T. Mayola, S.M. Mullins,
S.H.T. Murray, K.P. Mutshena, D. Negi, S.S. Ntshangase, J.N. Orce, P.
Papka, I. Ragnarsson, T.M. Ramashidzha, D.G. Roux, J.F. Sharpey-Schafer,
S. Stankiewicz, P.A. Vymers, M. Wiedeking, S.M. Wyngaardt

Chiral symmetry in nuclei

forms in angular momentum space, by the angular momenta of the odd proton, odd neutron and the rotation of the nucleus

a chiral system can be identified by the observation of a pair of degenerate rotational bands
→ in excitation energies
→ alignments, moments of inertia
→ B(M1) and B(E2) reduced transition probabilities

S. Frauendorf and J. Meng, Nucl. Phys. A 617 (1997) 131

Experimental data on chiral systems:

A = 80A = 100A = 130A = 190

Looking for almost identical chiral pair.

Several experiments were performed at iThemba LABS South Africa on the Tl isotopes

Experimental studies in the 190 mass region - the TI isotopes

angular momenta geometry –

- ✓ $h_{9/2}$ proton at the bottom of the $h_{9/2}$ shell
 - particle nature, j_p along the short nuclear axis
- ✓ $i_{13/2}$ neutrons at the upper part of the $i_{13/2}$ shell hole nature, j_n along the long axis
- ✓ triaxial shape (moderate quadrupole deformation ~0.15; triaxiality ~40) collective rotation along the intermediate axis

Nucleon orbitals near the Fermi surface of the Tl isotopes with A ~ 192 - 198

Nucleon orbitals near the Fermi surface of the Tl isotopes with A ~ 194

Neutron configurations \rightarrow N = 113

 \rightarrow quadrupole deformation ~ 0.15

Configuration $\rightarrow vi_{13/2}, vj \rightarrow j = p_{3/2}, f_{5/2}$ $\rightarrow vi_{13/2}, \Omega = 5/2$, but aligns with i=13/2 Neutron near the bottom of the i_{13/2} shell, i.e. hole nature

Odd ¹⁹³Hg (N=113):
->
$$vi_{13/2}$$
, i $\approx 6 \hbar$
-> $vi_{13/2}^3$, i $\approx 16 \hbar$
-> $vi_{13/2}^2vj$

Studying the Tl isotopes: 198**T**]

AFRODITE array at iThemba LABS, South Africa

9 HpGe clover detectors (7 cm x \emptyset 5 cm), Compton suppressed with BGO shields efficiency of 1.8% at 1.3 MeV 8 HpGe LEPS detectors (1 cm x \oslash 6 cm)

 197 Au(α ,3n) 198 Tl at beam energy of 40 MeV

Department: Science and Technology REPUBLIC OF SOUTH AFRICA E.A. Lawrie et al, Phys. Rev. C 28, 021305(R) (2008)

Studying the Tl isotopes: ¹⁹⁴Tl

AFRODITE array at iThemba LABS, South Africa

9 HpGe clover detectors (7 cm x Ø5 cm), Compton suppressed with BGO shields efficiency of 1.8% at 1.3 MeV
8 HpGe LEPS detectors (1 cm x Ø 6 cm)

¹⁸¹Ta(¹⁸O,5n)¹⁹⁴Tl at energy E(¹⁸O)=92 MeV

Target: ¹⁸¹Ta foil of 1mg/cm²

Beam time \rightarrow 2 weekends

Data analysis: gamma-gamma matrices, angular distribution ratio analysis, linear polarization analysis, gamma-ray intensities.

Level scheme of ¹⁹⁴Tl extended with more than 100 new transitions

P.L. Masiteng, PhD Thesis P.L. Masiteng et al, Eur. Phys. J. A 50 (2014) 119

Chiral pair in ¹⁹⁴Tl

 \rightarrow the only pair that is observed across backband region

 \rightarrow excellent near-degeneracy above the band crossings

P.L. Masiteng, PhD Thesis P.L. Masiteng et al, Phys. Lett. B 719 (2013) 83

P.L. Masiteng, ThD Thesis P.L. Masiteng et al, Phys. Lett. B 719 (2013) 83

Near-degeneracy in the 4-qp pair in ¹⁹⁴Tl compared with other chiral pairs

The 4-qp chiral pair in ¹⁹⁴Tl - the pair perhaps best near-degeneracy to date?

P.L. Masiteng, PhD Thesis P.L. Masiteng et al, Phys. Lett. B 719 (2013) 83

The negative parity bands in ¹⁹⁴Tl

P.L. Masiteng, PhD Thesis P.L. Masiteng et al, Eur. Phys. J. A 50 (2014) 119

→ Two chiral partner bands with $\pi h_{9/2} \times \nu i_{13/2}^{-3}$ → third competing band $\pi h_{9/2} \times \nu i_{13/2}^{-3}$ with lower alignments (~ 2ħ) lower excitation energy

Nuclear shape for the $\pi h_{9/2} \times \nu i_{13/2}^{-n}$ configuration in ¹⁹⁴Tl Cranked Nilsson-Strutinsky calculations

Deformation with $\varepsilon_2 = 0.15$, $\gamma = -40^{\circ} \div -45^{\circ}$

rotation predominantly around the intermediate axis \rightarrow supports chiral symmetry

Studying the Tl isotopes: ¹⁹⁴Tl DSAM lifetimes

AFRODITE array at iThemba LABS, South Africa

9 HpGe clover detectors (7 cm x Ø5 cm), Compton suppressed with BGO shields efficiency of 1.8% at 1.3 MeV
8 HpGe LEPS detectors (1 cm x Ø 6 cm)

¹⁸¹Ta(¹⁸O,5n)¹⁹⁴Tl at energy E(¹⁸O)=92 MeV

Target: ¹⁸¹Ta foil of 1mg/cm^{2} , onto thick backing of Bi, initial recoil velocity of v/c ~ 0.9 %

Beam time \rightarrow 3 weekends for experiment A and B respectively

DSAM analysis – using the programs COMPA, GAMMA and SHAPE (analysis led by Prof. A. Pasternak) Monte-Carlo methods to simulate the entry states in ¹⁹⁴Tl and the decay (statistical decay, superdeformed bands, stretched M1 bands, known discrete levels)

The lifetimes are extracted step by step starting with the highest-energy level of a band.

Measured lifetimes in ps AFRODITE array

Band 2

P.L. Masiteng, PhD Thesis P.L. Masiteng et al, Eur. Phys. J. A 52 (2016) 28

Multi-particle Rotor Model calculations for the $\pi h_{9/2} \times \nu i_{13/2}^{-3}$ bands

P.L. Masiteng, PhD Thesis P.L. Masiteng et al, Eur. Phys. J. A 52 (2016) 28

Multi-particle Rotor Model of Carlsson and Ragnarsson

- ightarrow to establish the properties of multiple chiral systems
- \rightarrow to understand the nature of the three negative parity bands

single particles -> Nilsson potential with standard parameters -> $\pi h_{9/2} \times \nu i_{13/2}^{-3}$ configuration is described as 1 proton in the $h_{9/2}$ shell

and 11 neutrons in the $i_{13/2}$ shell

core -> deformation $\varepsilon_2 = 0.15$ and $\gamma = 40^{\circ}$; -> irrotational moment of inertia

g-factors -> $g_R = 0.3$; $g_s = 0.7 g_{s,free}$

Studying ¹⁹³Tl

AFRODITE array at iThemba LABS, South Africa

9 HpGe clover detectors (7 cm x ∅5 cm), Compton suppressed with BGO shields efficiency of 1.8% at 1.3 MeV

¹⁸¹Ta(¹⁸O,6n)¹⁹³Tl at energy E(¹⁸O)=105 MeV

Target: ¹⁸¹Ta foil of 1mg/cm²

Beam time \rightarrow 2 weekends

Data: Experiment A \rightarrow 6 x 10⁹ events in the gamma-gamma matrix

Angular distribution ratios \rightarrow spins of the excited states Linear polarization \rightarrow parities of the excited states

J. Ndayishimye, PhD thesis

 $\pi h_{9/2} \times \nu i_{13/2}^{-4}$ band head $\approx 41/2^{-1}$

J. Ndayishimye, PhD thesis

Summary

- > Tl isotopes are an interesting region for chiral symmetry studies
- ✓ excellent near-degeneracy in 4qp pair of bands (¹⁹⁴Tl)
- ✓ chirality extends from 2qp to 4qp configurations (¹⁹⁴TI)
- ✓ possibly two chiral systems built on the same configuration (^{193,194}TI)
- ✓ Decay out of 4qp → 2qp and 3qp → 1qp bands strong support for chirality interpretation

> way forward:

- \checkmark study other neighbours, ¹⁹⁵Tl experiment is in progress
- ✓ better statistics, triple gamma-coincidence
- 5 new clovers are on order to increase the efficiency of the AFRODITE array

Thank you for your attention!

REPUBLIC OF SOUTH AFRICA

National Research Foundation