Variety of shapes and a complex shape coexistence in ${ }^{187} \mathrm{TI}$

G.J. Lane ${ }^{1}$, A.B.F. Lee ${ }^{1}$, G.D. Dracoulis ${ }^{1}$, A.O. Macchiavelli², P. Fallon ${ }^{2}$, R.M. Clark ${ }^{2}$, F.R. Xu ${ }^{3}$, and D.X. Dong ${ }^{3}$
${ }^{1}$ Australian National University, Canberra, Australia ${ }^{2}$ Lawrence Berkeley National Laboratory, Berkeley, USA ${ }^{3}$ Peking University, Peking, China

> Albert Lee: ANU PhD thesis (2013)

Partial results in Lee et al, EPJ Web of Conf. 35 (2012) 06002

Shape coexistence near $\mathrm{Z}=82$: Hg nuclei

NEUTRON NUMBER N

Original evidence for shape coexistence in $\mathrm{Hg}-\mathrm{Pb}$ region came from laser spectroscopy.
Odd-even staggering of $\delta<r^{2}>$
P. Dabkiewicz et. al. , Phys. Lett. B 82 (1979) 199-203

1/2-[521] (prolate) ground state for ${ }^{185} \mathrm{Hg}$
Excited (oblate) isomer in ${ }^{185} \mathrm{Hg}$ continues trend from heavier isotopes

Even-A Hg isotopes: coexisting bands

W. C. Ma et. al., Phys. Lett. 167B (1986) 277
R. V. F. Janssens et. al., Phys. Lett. 131B (1983) 35

Comprehensive even-A Hg systematics

Odd-A Hg nuclei: not as well studied

" $9 / 2+[624]$ "

Odd-A Hg nuclei: not as well studied

Original scheme from Hannachi et al, ZPA 330 (1988) 15.
Present scheme from Lane et al, should be published

Neighbouring even-A Pb systematics

Odd-TI nuclei: triple shape coexistence

${ }_{81}^{187} \mathrm{Tl}_{106}$

Odd-TI nuclei: triple shape coexistence

${ }_{81}^{187} \mathrm{Tl}_{106}$

$\pi S_{1 / 2}$ spherical hole
1/2+ \qquad 300
$-\quad 0$

Lane et al, NPA 586 (1995) 316-350

Odd-TI nuclei: triple shape coexistence

${ }_{81}^{187} \mathrm{Tl}_{106}$ high- Ω orbitals

band 6

${ }^{\prime} \mathrm{i}_{13 / 2} "$

Odd-TI nuclei: triple shape coexistence

${ }_{81}^{187} \mathrm{Tl}_{106}$

Prolate low- Ω orbitals

:

$$
\left(49 / 2^{+}\right) \frac{13 / 2^{59}}{5609}
$$

Lane et al, NPA 586 (1995) 316-350

Odd-TI nuclei: triple shape coexistence

${ }_{81}^{187} \mathrm{Tl}_{106}$

Prolate high- Ω orbital?

band 6

11/2-[505]?
$=22.5 \mathrm{~s}$
Lane et al, NPA 586 (1995) 316-350

Open questions

What about mqp isomers?

Unique identification - contrast with 0+ states
Dracoulis et al, PRC 69 (2004) 054318

Multiparticle isomers in ${ }^{187} \mathrm{TI}$

Lawrence Berkeley National Lab, USA, 2001
$-{ }^{159} \mathrm{~Tb}\left({ }^{32} \mathrm{~S}, 4 \mathrm{n}\right){ }^{187} \mathrm{TI}$

$154 \mathrm{MeV}^{32} \mathrm{~S}$

Data Analysis
-1.2×10^{9} events recorded from threefold γ-rays or higher

- Time coincidence overlap of +/- 700 ns

Total projection of in-beam gamma-rays

New level scheme for ${ }^{187} \mathrm{TI}$

New level scheme for ${ }^{187} \mathrm{TI}$

New level scheme for ${ }^{187} \mathrm{TI}$

Level scheme for ${ }^{187}$ TI: Part 2 of 5

Previously irregular 11/2-[505] band is now well-established.

Triaxial to prolate shape change

- Reference chosen to produce $\mathrm{i}_{\mathrm{x}}=0$ for prolate bands in nearby even-even nuclei.
- $\mathrm{i}_{13 / 2}$ neutron alignments are evident.
- Comparison of 11/2-[505] band to the prolate ${ }^{186} \mathrm{Hg}$ core.
- Signature splitting decreases as neutrons align.
- Triaxial to prolate shape change (Frauendorf, PLB 125 (1983) 245).
- Also in nearby Ir isotopes (e.g. Schuck et al., NPA 325 (1979) 421).

PES calculations for 1qp states in ${ }^{187} \mathrm{TI}$

PES calculations by Furong Xu and his student D.X. Dong.
Methodology described in Xu et al., Phys. Lett. B 435 (1998) 257

K^{π}	shape	Configuration	$E_{\text {calc }}$ (keV)	$E_{\text {expt }}$ (keV)	β_{2}	β_{4}	γ
$\frac{1}{2}^{+}$	oblate	$\pi \frac{1}{2}^{+}[400]$	0	0	0.081	0.003	-60^{0}
$\frac{13}{2}^{+}$	oblate	$\pi \frac{13}{2}^{+}[606]$	964	1061	0.191	0.016	-60^{0}
$\frac{9}{2}^{-}$	oblate	$\pi \frac{9}{2}^{-}[505]$	126	335	0.168	-0.004	-60^{0}
$\frac{11}{2}^{-}$	(prolate)	$\pi \frac{11}{2}^{-}[505]$	902	952	0.220	-0.024	-18^{0}
$\frac{1}{2}^{-}$	prolate	$\pi \frac{1}{2}^{-}[530]$	862	$\sim 1069^{a}$	0.258	-0.021	0^{0}
$\frac{3}{2}^{-}$	(prolate)	$\pi \frac{3}{2}^{-}[532]$	836	$\sim 967^{a}$	0.240	-0.017	14^{0}
$\frac{1}{2}^{+}$	(prolate)	$\pi \frac{1}{2}^{+}[660]$	1158	$\sim 1239^{b}$	0.269	-0.015	-13^{0}
$\frac{1}{2}^{-}$	(prolate)	$\pi \frac{1}{2}^{-}[541]$	805		0.186	-0.015	20^{0}

Energy predictions are generally in good agreement with experiment. 11/2-[505] state is predicted to be triaxial at the bandhead.

Level scheme for ${ }^{187}$ TI: Part 2 of 5

Time correlation issues

Sum of gates in a matrix of pairs of gamma-rays that precede pairs of double gates below the $1.6 \mu \mathrm{~s}$ isomer.
Establishes the band feeding isomer

Poor statistics above isomer means that projecting the decays out of the isomer gives a very dirty spectrum.
Cannot establish complete decay pattern

Exacerbated by short pulsing from cyclotron and the low energy time walk extending across multiple prompt peaks.

Level scheme for ${ }^{187}$ TI: Part 3 of 5

Band found above the 1.0 us isomer seen by Byrne et al.

Again not linked, $J \pi$ uncertain.

Can we understand the multiquasiparticle structure of these isomers?

K^{π}	shape	Configuration	$\begin{gathered} E_{\text {calc }} \\ (\mathrm{keV}) \end{gathered}$	β_{2}	β_{4}	γ
$\frac{27}{2}$	(prolate)	$\pi \frac{11}{2}^{-}[505] \otimes 2 \nu\left\{\frac{7}{2}^{-}[514] \otimes \frac{9}{2}^{+}[624]\right\}$	2148	0.233	-0.010	-12^{0}
- ${ }^{2}$	(prolate)	$\pi \frac{11}{2}^{-}[505] \otimes 2 \nu\left\{\frac{7}{2}^{-}[514] \otimes \frac{7}{2}^{-}[503]\right\}$	2596	0.212	-0.002	-22^{0}
$\frac{25}{2}+$	(prolate)	$\pi \frac{11}{2}^{-}[505] \otimes 2 \nu\left\{\frac{5}{2}^{-}[512] \otimes \frac{9}{2}^{+}[624]\right\}$	2422	0.231	-0.010	-12^{0}
$\frac{27}{2}^{-}$	(prolate)	$\pi \frac{11}{2}^{-}[505] \otimes 2 \nu\left\{\frac{7}{2}^{+}[404] \otimes \frac{9}{2}^{+}[624]\right\}$	2308	0.215	-0.009	19^{0}

$\frac{21}{2}^{+}$	oblate	$\pi \frac{9}{2}^{-}[505] \otimes 2 \nu\left\{\frac{3}{2}^{-}[512] \otimes \frac{9}{2}^{+}[624]\right\}$	2026	0.165	-0.007	-59^{0}
$\frac{23}{2}^{+}$	oblate	$\pi 2^{-}[505] \otimes 2 \nu\left\{\frac{5}{2}^{-}[503] \otimes \frac{9}{2}^{+}[624]\right\}$	2061	0.166	-0.009	-60^{0}
$\frac{25}{2}^{+}$	oblate	$\pi \frac{9}{2}^{-}[505] \otimes 2 \nu\left\{\frac{11}{2}^{+}[615] \otimes \frac{5}{2}^{-}[503]\right\}$	2499	0.157	-0.008	-60^{0}
$\frac{29}{2}^{+}$	oblate	$\pi \frac{13}{2}^{+}[606] \otimes 2 \nu\left\{\frac{7}{2}^{+}[633] \otimes \frac{9}{2}^{+}[624]\right\}$	2751	0.188	-0.009	-61^{0}
$\frac{25}{2}^{-}$	oblate	$\pi 2^{-}[505] \otimes 2 \nu\left\{\frac{7}{2}^{+}[633] \otimes \frac{9}{2}^{+}[624]\right\}$	1717	0.173	0.000	-60^{0}
$\frac{27}{2}^{-}$	(oblate $)$	$\left.\pi \frac{13}{2}^{+}[606] \otimes 2 \nu \frac{3}{2}^{-}[512] \otimes \frac{11}{2}^{+}[615]\right\}$	3492	0.171	-0.005	-92^{0}
$\frac{27}{2}^{+}$	oblate	$\pi \frac{13}{2}^{+}[606] \otimes 2 \nu\left\{\frac{9}{2}^{+}[624] \otimes \frac{5}{2}^{+}[642]\right\}$	2992	0.191	0.012	-60^{0}
$\frac{27}{2}^{-}$	oblate	$\pi \frac{9}{2}^{-}[505] \otimes 2 \nu\left\{\frac{7}{2}^{+}[633] \otimes \frac{11}{2}^{+}[615]\right\}$	2236	0.164	-0.002	-60^{0}
$\frac{29}{2}^{-}$	oblate	$\pi \frac{9}{2}^{-}[505] \otimes 2 \nu\left\{\frac{9}{2}^{+}[624] \otimes \frac{11}{2}^{+}[615]\right\}$	2356	0.157	0.000	-60^{0}

Range of 3qp states predicted at low energies with multiple shapes. Limited spectroscopic information precludes association with specific isomers at present. More data is required.

Level scheme for ${ }^{187}$ TI: Part 3 of 5

Expect only one signature partner to the $\mathrm{i}_{13 / 2}$ band. But we observe two bands feeding!?!?

Alignments for single-proton bands

Explanation: Enhanced deformation?

Choose a reference so that the new bands have $\mathrm{i}_{\mathrm{x}} \sim 6$ and 5 hbar.

From this Harris reference we can evaluate a moment of inertia. Then, knowing that:

$$
\beta_{2} \propto \sqrt{\Im_{e f f(\hbar \omega \sim 0.2)}}
$$

we can evaluate the ratio of the deformations to estimate that:

$$
\left.\frac{\beta \text { (new bands) }}{\beta\left({ }^{\text {i }} 13 / 2\right. \text { ") }}\right) \sim 1.43
$$

Gradual development of SD shape?

New bands in ${ }^{187}$ Tl appear to sit between the normal prolate deformed shape and the super-deformed shape

Conclusions

- Odd nuclei have a richer spectrum than the even cases potentially a better probe for examples of shape coexistence and a better test for theoretical models?
- New results for ${ }^{187}$ TI provide evidence for spherical, prolate, oblate and triaxial shapes.
- New isomer bands in ${ }^{187}$ TI may provide only the second examples of shape-coexisting, multi-quasiparticle states in this region. New spectroscopic information is required to finalise the interpretation.
- A possible fifth shape may be present in the form of enhanced deformation bands, intermediate between the normal and superdeformed shapes.

