

Variety of shapes and a complex shape coexistence in ¹⁸⁷TI

G.J. Lane¹, A.B.F. Lee¹, G.D. Dracoulis¹, A.O. Macchiavelli², P. Fallon², R.M. Clark², F.R. Xu³, and D.X. Dong³

- ¹ Australian National University, Canberra, Australia
- ² Lawrence Berkeley National Laboratory, Berkeley, USA
- ³ Peking University, Peking, China

Albert Lee: ANU PhD thesis (2013)
Partial results in Lee et al, EPJ Web of Conf. 35 (2012) 06002

Shape coexistence near Z=82: Hg nuclei

Original evidence for shape coexistence in Hg-Pb region came from laser spectroscopy.

Odd-even staggering of $\delta < r^2 >$

P. Dabkiewicz et. al., Phys. Lett. B **82** (1979) 199-203

1/2⁻[521] (prolate) ground state for ¹⁸⁵Hg

Excited (oblate) isomer in ¹⁸⁵Hg continues trend from heavier isotopes

Even-A Hg isotopes: coexisting bands

W. C. Ma et. al., Phys. Lett. **167**B (1986) 277

R. V. F. Janssens et. al., Phys. Lett. **131**B (1983) 35

Comprehensive even-A Hg systematics

Oblate ground state band

Prolate intruder around midshell

Heyde and Wood, RMP 83 (2011) 1467

Odd-A Hg nuclei: not as well studied

-3883 + X

-3214 + X

-2583 + X

-1998 + X

-1466 + X

993 + X

0 + X

Ground state Q, J and µ from laser spec

Lane et al, NPA A 589 (1995) 129-159

5

Odd-A Hg nuclei: not as well studied

Original scheme from Hannachi et al, ZPA 330 (1988) 15. Present scheme from Lane et al, should be published

Neighbouring even-A Pb systematics

band 6 "i_{13/2}"

 $(49/2^{+})$

126

Lane et al, NPA 586 (1995) 316-350

band 6

"i13/2"

126

¹⁸⁷TI₁₀₆

Oblate high-Ω orbitals

1/2[530]

band 6

"i13/2"

126

¹⁸⁷TI₁₀₆

Prolate low-Ω orbitals

1/2[530]

126

¹⁸⁷TI₁₀₆

Prolate high-Ω orbital?

1/2[530]

band 6

"i13/2"

Open questions

What about mqp isomers?

Unique identification – contrast with 0+ states

Dracoulis et al, PRC 69 (2004) 054318

Multiparticle isomers in ¹⁸⁷TI

Experiment with Gammasphere at LBNL

Lawrence Berkeley National Lab, USA, 2001

- ¹⁵⁹Tb(³²S,4n)¹⁸⁷Tl

Data Analysis

- 1.2 x 10⁹ events recorded from threefold γ-rays or higher
- Time coincidence overlap of +/- 700 ns

Total projection of in-beam gamma-rays

New level scheme for ¹⁸⁷TI

New level scheme for ¹⁸⁷TI

- ~ 120 new γ-rays
- ~ 70 new levels

New level scheme for ¹⁸⁷TI

Level scheme for ¹⁸⁷TI: Part 2 of 5

Previously irregular 11/2-[505] band is now well-established.

Triaxial to prolate shape change

- Reference chosen to produce i_x=0 for prolate bands in nearby even-even nuclei.
- i_{13/2} neutron alignments are evident.

- Comparison of 11/2-[505] band to the prolate ¹⁸⁶Hg core.
- Signature splitting decreases as neutrons align.
- Triaxial to prolate shape change (Frauendorf, PLB 125 (1983) 245).
- Also in nearby Ir isotopes (e.g. Schuck et al., NPA 325 (1979) 421).

PES calculations for 1qp states in ¹⁸⁷TI

PES calculations by Furong Xu and his student D.X. Dong. Methodology described in Xu et al., Phys. Lett. B 435 (1998) 257

K^{π}	shape	Configuration	E_{calc}	E_{expt}	β_2	eta_4	γ
			(keV)	(keV)			
$\frac{1}{2}^{+}$	oblate	$\pi \frac{1}{2}^{+} [400]$	0	0	0.081	0.003	-60^{0}
1		1					
$\frac{13}{2}^{+}$	oblate	$\pi \frac{13}{2}^{+} [606]$	964	1061	0.191	0.016	-60^{0}
$\frac{13}{\frac{2}{9}}$ - $\frac{1}{2}$	oblate	$ \pi \frac{13}{2}^{+}[606] $ $ \pi \frac{9}{2}^{-}[505] $	126	335	0.168	-0.004	-60^{0}
		_					
$\frac{11}{2}^{-}$	(prolate)	$\pi \frac{11}{2}^{-}[505]$	902	952	0.220	-0.024	-18^{0}
$\frac{1}{2}$	prolate	$\pi \frac{1}{2}^{-}[530]$	862	$\sim 1069^a$	0.258	-0.021	0_0
$\frac{\bar{3}}{2}$	(prolate)	$\pi \frac{\bar{3}}{2}^{-}[532]$	836	$\sim 967^a$	0.240	-0.017	14^{0}
$\frac{1}{2}$ +	(prolate)	$\pi \frac{1}{2}^{+}[660]$	1158	$\sim 1239^b$	0.269	-0.015	-13^{0}
$ \frac{11}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} + \frac{1}{2} - \frac{1}{2} $	(prolate)	$\pi \frac{1}{2}^{-}[541]$	805		0.186	-0.015	20^{0}

Energy predictions are generally in good agreement with experiment. 11/2-[505] state is predicted to be triaxial at the bandhead.

Level scheme for ¹⁸⁷TI: Part 2 of 5

Not linked, $J\pi$ uncertain.

Time correlation issues

Sum of gates in a matrix of pairs of gamma-rays that precede pairs of double gates below the 1.6µs isomer.

Establishes the band feeding isomer

Poor statistics above isomer means that projecting the decays out of the isomer gives a very dirty spectrum.

Cannot establish complete decay pattern

Exacerbated by short pulsing from cyclotron and the low energy time walk extending across multiple prompt peaks.

Level scheme for ¹⁸⁷TI: Part 3 of 5

Band found above the 1.0µs isomer seen by Byrne et al.

Again not linked, $J\pi$ uncertain.

Can we understand the multiquasiparticle structure of these isomers?

PES calculations for 3qp states in ¹⁸⁷TI

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\frac{27^{+}}{2} \text{(prolate)} \pi^{\frac{11}{2}^{-}}[505] \otimes 2\nu \{\frac{7}{2}^{-}[514] \otimes \frac{9}{2}^{+}[624]\} 2148 0.233 -0.010 -12^{0}$ $\frac{25^{-}}{2} \text{(prolate)} \pi^{\frac{11}{2}^{-}}[505] \otimes 2\nu \{\frac{7}{2}^{-}[514] \otimes \frac{7}{2}^{-}[503]\} 2596 0.212 -0.002 -22^{0}$ $\frac{25^{+}}{2} \text{(prolate)} \pi^{\frac{11}{2}^{-}}[505] \otimes 2\nu \{\frac{5}{2}^{-}[512] \otimes \frac{9}{2}^{+}[624]\} 2422 0.231 -0.010 -12^{0}$ $\frac{27^{-}}{2} \text{(prolate)} \pi^{\frac{11}{2}^{-}}[505] \otimes 2\nu \{\frac{7}{2}^{+}[404] \otimes \frac{9}{2}^{+}[624]\} 2308 0.215 -0.009 19^{0}$	K^{π}	shape	Configuration	E_{calc}	eta_2	eta_4	γ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		_	_	(keV)	•		•
	27+	/ - >	11-5				0
	$\frac{2t}{2}$	(prolate)		2148	0.233	-0.010	-12^{0}
	$\frac{25}{2}$ +	(prolate)	$\pi^{\frac{11}{2}}[505] \otimes 2\nu\{\frac{7}{2}[514] \otimes \frac{7}{2}[503]\}$	2596	0.212	-0.002	-22^{0}
		(prolate)	$\pi_{\frac{1}{2}}^{\frac{1}{1}}[505] \otimes 2\nu\{\frac{5}{2}^{-}[512] \otimes \frac{9}{2}^{+}[624]\}$	2422	0.231	-0.010	-12^{0}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{27}{2}$	(prolate)		2308	0.215	-0.009	19^{0}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{21}{2}$ +	oblate	$\pi_{\frac{9}{2}}^{-}[505] \otimes 2\nu\{\frac{3}{2}^{-}[512] \otimes \frac{9}{2}^{+}[624]\}$	2026	0.165	-0.007	-59^{0}
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{r} \underline{23} + \\ \underline{25} + \\ \underline{25} + \\ \underline{29} + \\ \underline{29} - \\ \underline{27} - \\ \underline{27} + \\ \underline{27} + \\ \end{array} $	oblate	$\pi^{\frac{\bar{9}}{2}^-}[505] \otimes 2\nu\{\frac{\bar{5}}{2}^-[503] \otimes \frac{\bar{9}}{2}^+[624]\}$	2061	0.166	-0.009	-60^{0}
$\begin{array}{llllllllllllllllllllllllllllllllllll$		oblate		2499	0.157	-0.008	-60^{0}
$\begin{array}{llllllllllllllllllllllllllllllllllll$		oblate	$\pi_{\frac{1}{2}}^{\frac{1}{3}}[606] \otimes 2\nu_{\frac{7}{2}}[633] \otimes \frac{9}{2}[624]$	2751	0.188	-0.009	-61^{0}
$\begin{array}{llllllllllllllllllllllllllllllllllll$		oblate	$\pi^{\frac{\bar{9}}{2}^-}[505] \otimes 2\nu\{\frac{\bar{7}^+}{2}[633] \otimes \frac{\bar{9}^+}{2}[624]\}$	1717	0.173	0.000	-60^{0}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(oblate)		3492	0.171	-0.005	-92^{0}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		oblate	$\pi_{\frac{13}{2}}^{+}[606] \otimes 2\nu_{\frac{9}{2}}^{+}[624] \otimes \frac{5}{2}^{+}[642]$	2992	0.191	0.012	-60^{0}
$\frac{29^{-}}{2} \text{oblate} \pi_{\frac{9}{2}}^{9-}[505] \otimes 2\nu \{ \frac{9}{2}^{+}[624] \otimes \frac{11}{2}^{+}[615] \} 2356 0.157 0.000 -60^{0}$	$rac{ar{27}}{2}$	oblate		2236	0.164	-0.002	-60^{0}
	$\frac{ar{29}}{2}$	oblate	$\pi_{\frac{9}{2}}^{-}[505] \otimes 2\nu\{\frac{\bar{9}}{2}^{+}[624] \otimes \frac{\bar{11}}{2}^{+}[615]\}$	2356	0.157	0.000	-60^{0}

Range of 3qp states predicted at low energies with multiple shapes.

Limited spectroscopic information precludes association with specific isomers at present. More data is required.

Level scheme for ¹⁸⁷TI: Part 3 of 5

Expect only one signature partner to the $i_{13/2}$ band. But we observe two bands feeding!?!?

Alignments for single-proton bands

- Fully aligned low-Ω protons have i_x~j
- Unfavoured signatures have i_x~j-1
- High- Ω bands have i_x~0

Issues:

- h_{9/2} protons are not fully aligned (only 3 and 2 hbar)
- Neither of the new positive parity bands are a signature partner to the known i_{13/2} band.
- Signature partners to each other.

Explanation: Enhanced deformation?

Choose a reference so that the new bands have i_x~6 and 5 hbar.

From this Harris reference we can evaluate a moment of inertia. Then, knowing that:

$$\beta_2 \propto \sqrt{\Im_{eff(\hbar\omega\sim0.2)}}$$

we can evaluate the ratio of the deformations to estimate that:

$$\frac{\beta(\text{new bands})}{\beta(\text{"i}_{13/2}")} \sim 1.43$$

Gradual development of SD shape?

New bands in ¹⁸⁷Tl appear to sit between the normal prolate deformed shape and the super-deformed shape

Conclusions

- Odd nuclei have a richer spectrum than the even cases –
 potentially a better probe for examples of shape coexistence and
 a better test for theoretical models?
- New results for ¹⁸⁷Tl provide evidence for spherical, prolate, oblate and triaxial shapes.
- New isomer bands in ¹⁸⁷TI may provide only the second examples of shape-coexisting, multi-quasiparticle states in this region. New spectroscopic information is required to finalise the interpretation.
- A possible fifth shape may be present in the form of enhanced deformation bands, intermediate between the normal and superdeformed shapes.