Experimental Study of excited bands in ¹⁶⁰Yb : Theoretical context of Exotic Shape-Coexistence

ARUNABHA SAHA

Variable Energy Cyclotron Centre, India

Shapes and Symmetries in Nuclei: from Experiment to Theory (SSNET16)

Introduction

- The great majority of nuclei known experimentally are non-spherical.
- Whereas tetrahedral symmetry has been observed abundantly in molecular physics, its observation in nuclear structure physics remains a challenge.
- The tetrahedral-symmetry nuclear-surfaces can be represented with the help of the non-zero α_{32} deformation parameter.
- Calculations by J. Dudek suggests that nuclei with a Tetrahedral deformation may exist at a low excitation in Nuclear landscape.

$$R(\theta,\phi) = R_o \left(1 + \sum_{\lambda=0}^{\infty} \sum_{\mu=-\lambda}^{\lambda} \alpha_{\lambda\mu} Y_{\lambda\mu}(\theta,\phi) \right)$$

Tetrahedral Shell Gaps

Realistic calculations with the phenomenological Woods-Saxon potential illustrating the mechanism of creating strong 'tetrahedral' gaps in the single-particle spectra.

J. Dudek et al., Phys. Rev. Lett. 97, 072501(2006)

Total Energy Calculations for ¹⁶⁰Yb

E(fyu)+Shell[e]+Correlation[PNP]

Courtesy : J. Dudek and his collabolators

Microscopic Macroscopic method and deformed Wood-Saxon potential are used for calculation.

Two symmetric minima at $\alpha_{32}^{\sim} \pm 0.18$ represent the exotic shape co-existing configuration with tetrahedral symmetry.

Prolate-oblate shape minima at $\alpha_{20}^{\sim} \pm 0.20$ and the presence of two shallow symmetric minima at $\alpha_{30}^{\sim} \pm 0.20 \rightarrow$ superposition of the pear-shapes with the surface of the sphere.

E(fyu)+Shell[e]+Correlation[PNP]

Competition between $\alpha_{\mbox{\scriptsize 32}}$ and $\alpha_{\mbox{\scriptsize 30}}$ in $^{\mbox{\scriptsize 160}}\mbox{Yb}$

E(fyu)+Shell[e]+Correlation[PNP]

Quadrupole deformation is set to zero in this particular discussion. Tetrahedral minima with $\alpha_{32}^{\sim} \pm 0.18$ lie approximately 1.5 MeV lower than the competing shallow pear-shape minima with $\alpha_{30}^{\sim} \pm 0.18$.

Historical scenario

B (E2; $I \rightarrow I-2$) / B (E1; $I \rightarrow I-1$) $\rightarrow 0$ as $I \rightarrow 0$

B(E2)/B(E1) ratio in 10⁶ fm²

Spin	$^{152}_{\ 64}\mathrm{Gd}_{88}$	$^{156}_{64}\mathrm{Gd}_{92}$	$^{154}_{66}\mathrm{Dy}_{88}$	$^{160}_{68}{ m Er}_{92}$	$^{164}_{68}{ m Er}_{96}$	$^{162}_{70}{ m Yb}_{92}$	$^{164}_{70}{ m Yb}_{94}$	
19^{-}	-	50.2(9.4)	-	-	-	-	-	
18^{-}	-	-	-	-	-	-	-	
17^{-}	-	16.0(2.7)	-	-	-	-	-	
16^-	-	-	-	-	-	-	-	
15^{-}	-	6.1(1.1)	12.2(0.5)	60.5(?)	23.9(12.9)	-	-	
14^{-}	-	-	-	74.0(28)	-	-	-	
13^{-}	13.5(?)	6.8(0.4)	26.9(18.3)	18.4(0.8)	22.9(12.0)	-	16.6(8.1)	Dara Earth
12^{-}	-	-	-	148 (?)	-	-	-	
11^{-}	3.6(?)	14.6(7.4)	10.0(?)	9.5(?)	-	10.4(?)	10.5(5.6)	Elements
10^{-}	30.0(?)	-	256.5(?)	813 (95)	-	209~(19)	279.3(48.6)	
9-	3.9(?)	-	-	-	-	11.1(0.3)	10.0(3.7)	
8-	-	311.8(43.9)	-	181 (?)	-	-	558.0(91.8)	
7^{-}	-	-	-	-	-	-	-	
6^{-}	-	160.7(49.2)	-	1349 (?)	-	-	908.1(217.2)	
5^{-}	-	-	-	-	-	-	-	
4^{-}	-	123.1(11.5)	-	-	-	-	-	

B (E2; $I \rightarrow I-2$) / B (E1; $I \rightarrow I-1$) $\rightarrow 0$ as $I \rightarrow 0$:

Is a Necessary but NOT Sufficient condition

Recent theoretical calculation suggests

B (E2; $I \rightarrow I-2$) $\rightarrow 0$ as $I \rightarrow 0$:

as an experimental signature also necessary for the tetrahedral symmetry

S. Tagami, Y. R. Shimizu and J. Dudek, Phys. Rev. C **87**,054306 (2013) S. Tagami, Y. R. Shimizu and J. Dudek, J. Phys. G **42**, 015106 (2015).

Experiment on ¹⁶⁰Yb

Indian National Gamma Array (INGA), TIFR, Mumbai, India

- Angles of detectors ... ± 23 , ± 40 , ± 65 and 90 degree.
- Gathered statistics ~ 6 x 10⁹ γ - γ events.
- Coincidence time window = 200 ns
- **Target thickness = 900 \mug/cm²**
- □ Baking density= 3 mg/cm^{2 nat}Pb

Efficiencies for the detection of γ , γ - γ and γ - γ - γ events \rightarrow 1.12, 1.45 and 2.01 times higher compared to the latest experiment on ¹⁶⁰Yb.

Results & Discussions : I,, DCO & IPDCO ratio

Results & Discussions : Alignment

- Alignment plot for positive-parity bands shows the well-known two-quasi-neutron and twoquasi-proton alignment mechanism for Band-1.
- Band-8 shows similar alignment values as that of Band-1.
- Also indicates that structure of Band-9 changes with increase in rotational frequency.
- Band-3 and Band-4 carry from the beginning an alignment ~ 8ħ. They undergo another crossing at higher angular momenta at ħω~ 0.38 MeV bringing in an extra alignment of about 6ħ.
- Alignment of Band-5 and Band-6 are very different from that of other negative-parity bands. Alignment of Band-5 is slightly higher compared to Band-6.

Results & Discussions : J⁽¹⁾

- Band-3 and Band-4 behave in a very similar manner and are conjectured to be signature partners as they have the same moment of Inertia.
- Here also, we see that Band-5 and Band-6 behaves in a very different manner than the other negative-parity sequences with respect to their kinematic moment.
- The backbending phenomenon occurring in Band-1 is reflected from the J⁽¹⁾ plot too.

Results & Discussions : J⁽²⁾

- Band-6 manifests at its bottom the properties similar to those of Band-5.
- As in the case of alignment and J⁽¹⁾ plots, Band-8 shows similar dynamic moment values as that of Yrast band.
- Band-9 manifests a complicated structure.

Results & Discussions : B(E2)/B(E1) ratio

Collaborators

A. Saha,^{1,2} T. Bhattacharjee,^{1,2,*} D. Curien,³ J. Dudek,^{3,4} K. Mazurek,⁵ A. Góźdź,⁴ S. Tagami,⁶ Y. R. Shimizu,⁶ S. R. Banerjee,^{1,2} S. Rajbanshi[†],⁷ A. Bisoi[‡],⁷ G. de Angelis,⁸ Soumik Bhattacharya,^{1,2} S. Bhattacharyya,^{1,2} S. Biswas,⁹ A. Chakraborty[§],¹⁰ S. Das Gupta[¶],¹ B. Dey,^{1,2,**} G. Duchene,³ A. Goswami,⁷ D. Mondal,^{1,2} D. Pandit,^{1,2} R. Palit,^{9,2} T. Roy,¹ R. P. Singh,¹¹ M. Saha Sarkar,⁷ S. Saha,⁹ and J. Sethi⁹ ¹Variable Energy Cyclotron Centre, IN-700064 Kolkata, India ²Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, IN-400094 Mumbai, India ³Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France ⁴Institute of Physics, Marie Curie-Skłodowska University, PL-20031 Lublin, Poland ⁵The Niewodniczański Institute of Nuclear Physics. Polish Academy of Sciences. 2 ul. Radzikowskiego 152, PL-31 342 Kraków, Poland ⁶Department of Physics, Faculty of Sciences, Kyushu University, Fukuoka JP-8190359, Japan ⁷Saha Institute of Nuclear Physics, IN-700064 Kolkata, India ⁸INFN, Laboratori Nazionali di Legnaro, IT-35020 Legnaro, Italy ⁹Tata Institute of Fundamental Research, IN-400005 Mumbai, India ¹⁰Department of Physics, Krishnanath College, IN-742101 West Bengal, India ¹¹Inter University Accelerator Centre, IN-110067 New Delhi, India

MERCI BEAUCOUP!!

Theoretical Predictions

	. 1	1(0
•Theoretical studies by Strasbourg-Fukuoka	Î	¹⁰⁰ Yb
collaboration suggest that the tetrahedral	6	Tetrahedral
symmetry solution allows for the precisely		g.s.b. band
restricted spin sequences:	5	14^+ $10^ 10^+$
0+,3-,4+,6±,7-,8+,9±,10±		10 10
• <u>+</u> indicates the presence of degenerate		
opposite-parity states.	4	9 9 ⁻
•The two characteristic sub-sequences of		12 <u> </u>
opposite parity form a common $E_{I} \propto I^{*}(I+1)$	3	
parabola.		10 ⁺ 7
•A surprising element on the list of exotic	2	66+
features is the total absence of 4- and 5- states in		8+
the negative-parity sub-sequence and presence		<pre></pre>
of Δ I=3 band members with I ^{π} =3-,6-,9-,		<u> </u>
•The vanishing quadrupole and dipole moments		4^+ 3^-
hinder the population of the tetrahedral	0	$\frac{1}{0} + \frac{1}{0} + \frac{1}$
symmetry states via collective transitions.		