Experimental Study of excited bands in ${ }^{160} \mathrm{Yb}$: Theoretical context of Exotic Shape-Coexistence

ARUNABHA SAHA

Variable Energy Cyclotron Centre, India

Introduction

- The great majority of nuclei known experimentally are non-spherical.
- Whereas tetrahedral symmetry has been observed abundantly in molecular physics, its observation in nuclear structure physics remains a challenge.
- The tetrahedral-symmetry nuclear-surfaces can be represented with the help of the nonzero α_{32} deformation parameter.
- Calculations by J. Dudek suggests that nuclei with a Tetrahedral deformation may exist at a
 low excitation in Nuclear landscape.

$$
R(\theta, \phi)=R_{o}\left(1+\sum_{\lambda=0}^{\infty} \sum_{\mu=-\lambda}^{\lambda} \alpha_{\lambda \mu} Y_{\lambda \mu}(\theta, \phi)\right)
$$

Tetrahedral Shell Gaps

Realistic calculations with the phenomenological Woods-Saxon potential illustrating the mechanism of creating strong 'tetrahedral' gaps in the single-particle spectra.

Total Energy Calculations for ${ }^{160} \mathrm{Yb}$

$\mathrm{E}(\mathrm{fyu})+$ Shell[e]+Correlation[PNP]

Microscopic Macroscopic method and deformed Wood-Saxon potential are used for calculation.

Two symmetric minima at $\alpha_{32}{ }^{\sim} \pm 0.18$ represent the exotic shape co-existing configuration with tetrahedral symmetry.

Prolate-oblate shape minima at $\alpha_{20}{ }^{\sim} \pm 0.20$ and the presence of two shallow symmetric minima at $\alpha_{30}{ }^{\sim} \pm 0.20 \rightarrow$ superposition of the pear-shapes with the surface of the sphere.

Competition between α_{32} and α_{30} in ${ }^{160} \mathrm{Yb}$

Courtesy : J. Dudek and his collabolators

Quadrupole deformation is set to zero in this particular discussion. Tetrahedral minima with $\alpha_{32}{ }^{\sim} \pm 0.18$ lie approximately 1.5 MeV lower than the competing shallow pear-shape minima with $\alpha_{30}{ }^{\sim} \pm 0.18$.

Historical scenario

$B(E 2) / B(E 1)$ ratio in $10^{6} \mathrm{fm}^{2}$

Spin	${ }_{64}^{152} \mathrm{Gd}_{88}$	${ }_{64}^{156} \mathrm{Gd}_{92}$	${ }_{66}^{154} \mathrm{Dy}_{88}$	${ }_{68}^{160} \mathrm{Er}_{92}$	${ }_{68}^{164} \mathrm{Er}_{96}$	${ }_{70}^{162} \mathrm{Yb}_{92}$	${ }_{70}^{164} \mathrm{Yb}_{94}$
19^{-}	-	$50.2(9.4)$	-	-	-	-	-
18^{-}	-	-	-	-	-	-	-
17^{-}	-	$16.0(2.7)$	-	-	-	-	-
16^{-}	-	-	-	-	-	-	-
15^{-}	-	$6.1(1.1)$	$12.2(0.5)$	$60.5(?)$	$23.9(12.9)$	-	-
14^{-}	-	-	-	$74.0(28)$	-	-	-
13^{-}	$13.5(?)$	$6.8(0.4)$	$26.9(18.3)$	$18.4(0.8)$	$22.9(12.0)$	-	$16.6(8.1)$
12^{-}	-	-	-	$148(?)$	-	-	-
11^{-}	$3.6(?)$	$14.6(7.4)$	$10.0(?)$	$9.5(?)$	-	$10.4(?)$	$10.5(5.6)$
10^{-}	$30.0(?)$	-	$256.5(?)$	$813(95)$	-	$209(19)$	$279.3(48.6)$
9^{-}	$3.9(?)$	-	-	-	-	$11.1(0.3)$	$10.0(3.7)$
8^{-}	-	$311.8(43.9)$	-	$181(?)$	-	-	$558.0(91.8)$
7^{-}	-	-	-	-	-	-	-
6^{-}	-	$160.7(49.2)$	-	$1349(?)$	-	-	$908.1(217.2)$
5^{-}	-	-	-	-	-	-	-
4^{-}	-	$123.1(11.5)$	-	-	-	-	-

Rare Earth Elements

B (E2; I \rightarrow I-2) / B (E1; I \rightarrow I-1) $\rightarrow 0$ as I $\rightarrow 0:$

Is a Necessary but NOT Sufficient condition
Recent theoretical calculation suggests

$$
\text { B (E2; I } \rightarrow \mathrm{I}-2) \rightarrow 0 \text { as I } \rightarrow 0:
$$

as an experimental signature also necessary for the tetrahedral symmetry
S. Tagami, Y. R. Shimizu and J. Dudek, Phys. Rev. C 87,054306 (2013)
S. Tagami, Y. R. Shimizu and J. Dudek, J. Phys. G 42, 015106 (2015).

Experiment on ${ }^{160} \mathrm{Yb}$

Indian National Gamma Array (INGA), TIFR, Mumbai, India
\square Total no. of detectors $=20$

- Angles of detectors ... $\pm 23, \pm 40$, ± 65 and 90 degree.
\square Gathered statistics $\sim 6 \times 10^{9} \gamma-\gamma$ events.

Coincidence time window $=200$ ns
\square Target thickness $=900 \mu \mathrm{~g} / \mathrm{cm}^{2}$

- Baking density $=3 \mathrm{mg} / \mathrm{cm}^{2} \mathrm{nat} \mathrm{Pb}$
${ }^{148} \mathrm{Sm}\left({ }^{16} \mathrm{O}, 4 \mathrm{n}\right){ }^{160} \mathrm{Yb} ; \mathrm{E}_{\text {beam }}=90 \mathrm{MeV}$

Efficiencies for the detection of $\gamma, \gamma-\gamma$ and $\gamma-\gamma-\gamma$ events $\rightarrow 1.12,1.45$ and 2.01 times higher compared to the latest experiment on ${ }^{160} \mathrm{Yb}$.

Results \& Discussions : I_{v} DCO \& IPDCO ratio

Band-4

243.8

Representative spectrum gate283+432

$$
\Delta_{\mathrm{IPDCO}}=\frac{a\left(E_{\gamma}\right) N_{\perp}-N_{\|}}{a\left(E_{\gamma}\right) N_{\perp}+N_{\|}}
$$

$$
a\left(E_{\gamma}\right)=\frac{N_{\|}(\text {unpolarised })}{N_{\perp}(\text { unpolarised })},
$$

 ${ }_{3657}$

Results \& Discussions : Alignment

- Band-3 and Band-4 carry from the beginning an alignment ~ 8 . They undergo another crossing at higher angular momenta at $\hbar \omega^{\sim} 0.38 \mathrm{MeV}$ bringing in an extra alignment of about $6 \hbar$.
- Alignment of Band-5 and Band-6 are very different from that of other negative-parity bands. Alignment of Band-5 is slightly higher compared to Band-6.
- Alignment plot for positive-parity bands shows the well-known two-quasi-neutron and two-quasi-proton alignment mechanism for Band-1.
- Band-8 shows similar alignment values as that of Band-1.
- Also indicates that structure of Band-9 changes with increase in rotational frequency.

Results \& Discussions : $\mathbf{J}^{(1)}$

- Band-3 and Band-4 behave in a very similar manner and are conjectured to be signature partners as they have the same moment of Inertia.
- Here also, we see that Band-5 and Band-6 behaves in a very different manner than the other negative-parity sequences with respect to their kinematic moment.
- The backbending phenomenon occurring in Band-1 is reflected from the $\mathrm{J}^{(1)}$ plot too.

Results \& Discussions : J(2)

- Band-6 manifests at its bottom the properties similar to those of Band-5.
- As in the case of alignment and $\mathrm{J}^{(1)}$ plots, Band-8 shows similar dynamic moment values as that of Yrast band.
- Band-9 manifests a complicated structure.

Results \& Discussions : B(E2)/B(E1) ratio

Collaborators

A. Saha,,${ }^{1,2}$ T. Bhattacharjee, ${ }^{1,2, *}$ D. Curien, ${ }^{3}$ J. Dudek,,${ }^{3,4}$ K. Mazurek, ${ }^{5}$ A. Góźdź, ${ }^{4}$ S. Tagami, ${ }^{6}$ Y. R. Shimizu, ${ }^{6}$ S. R. Banerjee, ${ }^{1,2}$ S. Rajbanshi ${ }^{\dagger},{ }^{7}$ A. Bisoi ${ }^{\ddagger},{ }^{7}$ G. de Angelis, ${ }^{8}$ Soumik Bhattacharya, ${ }^{1,2}$ S. Bhattacharyya, ${ }^{1,2}$ S. Biswas, ${ }^{9}$ A. Chakraborty ${ }^{\S},{ }^{10}$ S. Das Gupta $\left\{,{ }^{1}\right.$ B. Dey, ${ }^{1,2, * *}$ G. Duchene, ${ }^{3}$ A. Goswami, ${ }^{7}$ D. Mondal, ${ }^{1,2}$ D. Pandit,,${ }^{1,2}$ R. Palit, ${ }^{9,2}$ T. Roy, ${ }^{1}$ R. P. Singh, ${ }^{11}$ M. Saha Sarkar, ${ }^{7}$ S. Saha, ${ }^{9}$ and J. Sethi ${ }^{9}$
${ }^{1}$ Variable Energy Cyclotron Centre, IN-700 064 Kolkata, India
${ }^{2}$ Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, IN-400094 Mumbai, India
${ }^{3}$ Université de Strasbourg, CNRS, IPHC UMR 7178, F-67 000 Strasbourg, France
${ }^{4}$ Institute of Physics, Marie Curie-Sktodowska University, PL-20 031 Lublin, Poland
${ }^{5}$ The Niewodniczañski Institute of Nuclear Physics, Polish Academy of Sciences, 2 ul. Radzikowskiego 152, PL-31 342 Kraków, Poland
${ }^{6}$ Department of Physics, Faculty of Sciences, Kyushu University, Fukuoka JP-819 0359, Japan
${ }^{7}$ Saha Institute of Nuclear Physics, IN-700 064 Kolkata, India
${ }^{8}$ INFN, Laboratori Nazionali di Legnaro, IT-35 020 Legnaro, Italy
${ }^{9}$ Tata Institute of Fundamental Research, IN-400005 Mumbai, India
${ }^{10}$ Department of Physics, Krishnanath College, IN-742 101 West Bengal, India
${ }^{11}$ Inter University Accelerator Centre, IN-110067 New Delhi, India

MERCI BEAUCOUP!!

Theoretical Predictions

-Theoretical studies by Strasbourg-Fukuoka collaboration suggest that the tetrahedral symmetry solution allows for the precisely restricted spin sequences:
$0^{+}, 3^{-}, 4^{+}, 6^{ \pm}, 7^{-}, 8^{+}, 9 \pm, 10^{ \pm}$
$\bullet \pm$ indicates the presence of degenerate opposite-parity states.
-The two characteristic sub-sequences of opposite parity form a common $\mathrm{E}_{\mathrm{I}} \propto \mathrm{I}^{*}(\mathrm{I}+1)$ parabola.
-A surprising element on the list of exotic features is the total absence of 4 - and 5 - states in the negative-parity sub-sequence and presence of $\Delta l=3$ band members with $I^{\pi}=3-, 6-, 9-, \ldots$
-The vanishing quadrupole and dipole moments hinder the population of the tetrahedral symmetry states via collective transitions.

${ }^{160} \mathbf{Y b}$

