Octupole deformation in the nuclear chart based on the 3D Skyrme Hartree－Fock plus BCS model

Shuichiro Ebata

Nuclear Reaction Data Centre（JCPRG），
Faculty of Science，Hokkaido University

Takashi Nakatsukasa

Nuclear Reaction
Data Centre（JCPRG）
Faculty of Science，Hokkaido University

Center for Computational Sciences

and Faculty of Pure and Applied Sciences，University of Tsukuba

Acknowledgement
This work was funded by ImPACT Program of Council for Science， Technology and Innovation（Cabinet Office，Government of Japan）， and was supported by Interdisciplinary Computational Science Program in CCS，University of Tsukuba．

Introduction

How to investigate nuclear deformation? There are many aspects for the Deformation

Spontaneous symmetry breaking

The spherical symmetry is broken by the correlation between individual particle motions and quantum fluctuations ("single-particle" vs. "collectivity").

S.P. states in deformed mean field

The degeneracy of single-particle states is solved in deformed mean field.
\leftarrow Neutron, Proton states in the vicinity of Fermi surface have a key role to define the nuclear shape

Role of Pairing

Amplitude of pairing correlation which is sensitive to he level density has a important role for nuclear shape.

Many kinds of deformation

Quadrupole(prolate, oblate, triaxial), Octupole(I=3,m), Hexadecapole(β_{4})

How do we regard the nuclear deformation?

- Rotational bands ■ Large quadrupole moment ■ Changes of S.P. states
- Isomer in nuclear fission Changes of reaction cross section(?)

Method
 S.E. et al., PRC82(2010) 034306, N.Tajima, et al., NPA603 (1996) 23.

Procedure to calculate self-consistent HF+BCS state

Interaction (ph) : Skyrme (SkM*), ($p p, h h$) : Constant (monopole)

$$
\Delta_{k}(t)=\sum_{l>0} G_{k l} \kappa_{l}(t) \quad G_{k l}=g f\left(\epsilon_{k}^{0}\right) f\left(\epsilon_{l}^{0}\right)
$$

$f(\epsilon)$: cutoff function
1, HF calculation : Imaginary-time method
2, Unoccupied states are calculated up to the cutoff energy.
ϵ_{k}^{0} : s.p. energy at g.s.

3 , Occupation probabilities v_{k} are evaluated by BCS gap equation.
3^{\prime}, Calculate density including $\left|v_{k}\right|^{2}$
4, HF+BCS calculation : Imaginary-time method
$f(\varepsilon)=\left(1+\exp \left[\frac{\varepsilon-\epsilon_{\mathrm{c}}}{0.5 \mathrm{MeV}}\right]\right)^{-1 / 2 \stackrel{\text { Cutoff Ene. }}{\downarrow} \theta\left(e_{\mathrm{c}}-\varepsilon\right)}$
$\epsilon_{\mathrm{c}}=\underset{\substack{\lambda}}{\tilde{\lambda}}+5.0 \mathrm{MeV} \quad e_{\mathrm{c}}=\epsilon_{\mathrm{c}}+2.3 \mathrm{MeV}$

Iterative calculation
up to the convergence

Ave. of LUMO \& HOMO

Method s.E. et al., PRC82(2010) 034306, N.Tajima, et al., NPA603 (1996) 23.

$$
\Delta_{k}(t)=\sum_{l>0} G_{k l} \kappa_{l}(t) \quad G_{k l}=g f\left(\epsilon_{k}^{0}\right) f\left(\epsilon_{l}^{0}\right)
$$

Pairing strength is constant in the Time-Evolution...

How to decide the pairing strength \boldsymbol{g} at each nuclide?

$$
\tilde{\Delta}=\frac{g_{\tau}}{2} \tilde{\Delta} \int_{-\infty}^{\infty} d \varepsilon \frac{f^{2}(\varepsilon) \bar{D}_{\tau}(\varepsilon)}{\sqrt{\left(\varepsilon-\bar{\lambda}_{\tau}\right)^{2}}+f^{2}(\varepsilon) \tilde{\Delta}^{2}} \quad \tilde{\Delta}=12 A^{-1 / 2}
$$

Nucleon \#: $\quad N_{\tau}=\int_{-\infty}^{\infty} d \varepsilon \frac{\left(\varepsilon-\bar{\lambda}_{\tau}\right)^{2} \bar{D}_{\tau}(\varepsilon)}{\sqrt{\left(\varepsilon-\bar{\lambda}_{\tau}\right)^{2}}+f^{2}(\varepsilon) \tilde{\Delta}^{2}}$
Level Density : $\quad \bar{D}_{\tau}(\varepsilon)=\frac{1}{2 \pi^{2}} \int d r\left(\frac{2 m_{\tau}^{*}(r)}{\hbar^{2}}\right)^{3 / 2}\left(\varepsilon-V_{\tau}(r)\right)^{1 / 2} \Theta\left(\varepsilon-V_{\tau}\right)$

Pairing strength is changed depending on the shell-structure (also on the interaction: effective mass m^{*}, centroid energy V)

Calculation space for the self-consistent HF+BCS states

Fully 3D-Spherical meshed box:
Our subject is Nuclear chart. We calculate the even-even nuclei with Z= 6-92.
For light nuclei ($6<Z<20$),
we use the box has radius $\mathbf{1 2}[\mathrm{fm}]$ and meshed by $0.8[\mathrm{fm}]$.
For middle heavy nuclei ($20<Z<82$),
we use the box has radius $\mathbf{1 5}[\mathrm{fm}]$ and meshed by $\mathbf{1 . 0}[\mathrm{fm}]$.
For heavy nuclei ($82<Z<92$), we use the box has radius $\mathbf{2 0}[\mathrm{fm}]$ and meshed by $\mathbf{1 . 0}[\mathrm{fm}]$.

$$
\begin{aligned}
\phi_{l}(\vec{r}, \sigma ; t) & \rightarrow \phi_{l}(x, y, z, \sigma ; t) \\
& x+y+z \sim 15,000-32,000
\end{aligned}
$$

Each single-particle state has many lattice points to describe the wave function.

Results

3D HF+BCS Cal. w/ SkM* From N=Z to N=2Z, Z=6-92 even-even (Total \# 1005)

Comparison with m.v. Stoitsov, et. al. PRC68 (2003) 054312

Axial deformed $\mathrm{HFB}+\mathrm{THO}+\mathrm{LN}$ Cal. w/ SkM* $+\delta$-Vol. pairing

Results (Deformed)

3D HF+BCS Cal. w/ SkM* Deformed nuclei: $\left|\beta_{2}\right|>0.05$

Results (Deformed: prolate)

3D HF+BCS Cal. w/ SkM* Deformed nuclei: $\left|\beta_{2}\right|>0.05, \gamma<1.5^{\circ}$

Quadrupole Deformation : Prolate (\# 375 / 1005)

Results (Deformed: oblate)

3D HF+BCS Cal. w/ SkM* Deformed nuclei: $\left|\beta_{2}\right|>0.05,58.5^{\circ}<\gamma<60^{\circ}$

Results (Deformed: triaxial)

3D HF+BCS Cal. w/ SkM* Deformed nuclei: $\left|\beta_{2}\right|>0.05,1.5^{\circ}<\gamma<58.5^{\circ}$

Quadrupole Deformation : Triaxial (\# 101 / 1005)

Results (octupole)

3D HF+BCS Cal. w/ SkM* can describe octupole moments in the ground state.
The octupole deformation parameter is defined using the axis of rotational symmetry. (<Q22> = <xy-yx>=0 $\rightarrow \mathrm{z}$ is regarded as the axial symmetric axis.)
Octupole deformation parameter $\beta_{3}, \beta_{3 \mathrm{~m}}$

$$
\begin{aligned}
& \beta_{3}=\left(\sum_{m=-3}^{3} \alpha_{3 m}^{2}\right)^{1 / 2} \\
& \beta_{3 m}=\left(\alpha_{3 m}^{2}+\alpha_{3-m}^{2}\right)^{1 / 2}
\end{aligned}
$$

The mass-multipole moment

$$
\begin{array}{r}
\alpha_{l m} \equiv \frac{4 \pi}{3 A \bar{R}^{l}} \int r^{l} X_{l m}(\Omega) \rho(r) d \boldsymbol{r} \\
\bar{R}=\sqrt{5\left\langle\sum_{i=1}^{A} r_{i}^{2}\right\rangle / 3 A} \begin{array}{l}
X_{l 0}=Y_{l 0} \\
X_{l m}=\frac{1}{\sqrt{2}}\left(Y_{l-|m|}+Y_{l-|m|}^{*}\right) \\
X_{l-|m|}=\frac{-i}{\sqrt{2}}\left(Y_{l|m|}-Y_{l|m|}^{*}\right)
\end{array}
\end{array}
$$

Results (Deformed: octupole)

3D HF+BCS Cal. w/ SkM* Octupole deformed nuclei: $\left|\beta_{3}\right|>0.01$

Results (Deformed: octupole)

3D HF+BCS Cal. w/ SkM* Octupole deformed nuclei: $\left|\beta_{3}\right|>0.01$

Results (Deformed: octupole β_{30})

3D HF+BCS Cal. w/ SkM* Octupole deformed nuclei: $\left|\beta_{3}\right|>0.01$

Results (Deformed: octupole β_{31})

3D HF+BCS Cal. w/ SkM* Octupole deformed nuclei: $\left|\beta_{3}\right|>0.01$

Results (Deformed: octupole β_{32})
3D HF+BCS Cal. w/ SkM* Octupole deformed nuclei: $\left|\beta_{3}\right|>0.01$

Results (Deformed: octupole β_{33})
3D HF+BCS Cal. w/ SkM* Octupole deformed nuclei: $\left|\beta_{3}\right|>0.01$
β_{33} for Total (\# 1005)

Results (Octupole correlations: ${ }^{144} \mathrm{Ba}$) Skyrme $\mathrm{HF}+\mathrm{BCS}+$ Constraints
W/ Q_{30} constraints

Results (Octupole correlations: ${ }^{220} \mathrm{Rn}$) Skyrme $\mathrm{HF}+\mathrm{BCS}+$ Constraints
W/ Q_{30} constraints

Results (β_{2} vs. $\beta_{3}:{ }^{144} \mathrm{Ba},{ }^{220} \mathrm{Rn}$) $w / Q_{2 m}$ constraints \& w/o $Q_{3 m}$ constraints

In both nuclide, $\beta_{31}, \beta_{32}, \beta_{33}$ do not appear under β_{2} constraints (prolate).
Octupole deformation disappear under the large quadrupole deformation.

Results (β_{30} vs. β_{31} vs. β_{32} vs. $\left.\beta_{33}:{ }^{144} \mathrm{Ba},{ }^{220} \mathrm{Rn}\right)$ skyrme $\mathrm{HF}+\mathrm{BCS}+$ Constraints w/ $\mathrm{Q}_{3 \mathrm{~m}}$ constraints

In both, β_{30} is lowest in the energy surface under the octupole constraints.
In this work, ${ }^{144} \mathrm{Ba}$ does not have local minimum on the β_{31}, β_{32} and β_{33} surfaces. Although we need more investigation, ${ }^{220} \mathrm{Rn}$ has some possibility of a local minimum on the β_{31} energy surface.

Summary

\checkmark We investigate the ground states for even-even nuclei in the nuclear chart by 3D HF+BCS. We found about 54% deformed nuclide in the chart.
\checkmark In the quadrupole deformed nuclei, the Prolate nuclei is 70%, Oblate is 12%, and Triaxial is 18%. We found the Prolate dominance.
\checkmark The nuclei with octupole deformation in their ground states are found (about 30 nuclei). They appear in the mass region with $Z=54-70,86-92$ and $N=\mathbf{8 6 - 9 0}, 130-138$, which is consistent to the region of $\Delta l=\mathbf{3}$ correlation. They might appear only with the correlations in both proton and neutron.
\checkmark The octupole deformed nuclei might have only pear shape (Q_{30} type), although this work are performed in the 3D coordinate.
\checkmark We investigate octupole correlation in ${ }^{144} \mathrm{Ba}$ and ${ }^{220} \mathrm{Rn}$ using multi-constraints for $\mathrm{Q}_{30}, \mathrm{Q}_{31}, \mathrm{Q}_{32}$, and Q_{33}.

Remains to do ...

> Stable calculation for octupole deformed nuclei
$>$ Octupole correlation strength
> Relation between deformed nuclei region and pairing strength
> Space between single-particle orbits

Results (Octupole Def. vs. ph-state)

*Taken from P. Ring \& P. Shock text book

Octupole Nuclide

$\Delta l=3$ pair ph-states
$Z: d_{5 / 2}-h_{11 / 2}$, $f_{7 / 2}-i_{13 / 2}$
$N: f_{7 / 2}-i_{13 / 2}$, $g_{9 / 2}-j_{15 / 2}$
*Taken from P. Ring \& P. Shock text book

Figure 2.21c. Same as Fig. 2.21a for protons in heavy nuclei

