

Lifetime measurement in the even-even molybdenum isotopes with the PreSPEC-AGATA setup

Damian Ralet*

Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, 91405 Orsay, France

 * Supported by the BMBF under Nos. 05P09RDFN4, 05P12RDFN8, and by the LOEWE center HIC for FAIR. $^{\circ}$ $^{\circ}$ $^{\circ}$

- Introduction: the mass region A \approx 100
- Experimental setup
- Data Analysis
- Lifetime determination
- Comparison with models

- Introduction: the mass region $A{\approx}100$
- Experimental setup
- Data Analysis
- Lifetime determination
- Comparison with models

Introduction: the mass region A \$100 Deformation predictions

Hartree-Fock-Bogoliubov shape predictions

J.P. Delaroche, Phys. Rev. C 81,014303 (2010)

Introduction: the mass region A \$100 Deformation predictions

Hartree-Fock-Bogoliubov shape predictions

J.P. Delaroche, Phys. Rev. C 81,014303 (2010)

E4/E2 energy ratios

E4/E2 energy ratios

E4/E2 energy ratios

11/11/2016

D. Ralet - SSNET 2016

E4/E2 energy ratios

11/11/2016

D. Ralet - SSNET 2016

E4/E2 energy ratios

11/11/2016

D. Ralet - SSNET 2016

E4/E2 energy ratios

11/11/2016

D. Ralet - SSNET 2016

5 / 31

æ

Introduction: the mass region A ≈ 100 Energy ratios

Adopted energy values

D. Ralet - SSNET 2016

Lifetime range of Mo isotopes

CSNSM

Lifetime measurement of ¹⁰⁸Mo higher spin states

11/11/2016

D. Ralet - SSNET 2016

8 / 31

臣

Lifetime measurement of ¹⁰⁸Mo higher spin states

In-flight γ -ray spectroscopy with the PreSPEC-AGATA setup

11/11/2016

D. Ralet - SSNET 2016

- Introduction: the mass region A \approx 100
- Experimental setup
- Data Analysis
- Lifetime determination
- Comparison with models

Uranium beam from SIS-18, 600 MeV/A

$\label{eq:Relativistic fission} Relativistic fission \\ on a beryllium target (1033 \ mg/cm^2)$

Fission products: ¹⁰⁹Tc and ¹⁰⁸Mo isotopes produced

Selection and identification of the fragments: $B\rho - \Delta E - B\rho$ method

Picture of the experimental area

11/11/2016

D. Ralet - SSNET 2016

200

Exotic beam from the FRagment Separator (FRS)

11/11/2016

D. Ralet - SSNET 2016

200

PreSPEC-AGATA setup

Knock-out reaction on a beryllium target (700 mg/cm²)

11/11/2016

γ rays detected with the AGATA and HECTOR detectors

11/11/2016

Reaction products detected in LYCCA

11/11/2016

D. Ralet - SSNET 2016

200

Reaction products detected in LYCCA

11/11/2016

D. Ralet - SSNET 2016

200

- Introduction: the mass region $A{\approx}100$
- Experimental setup
- Data Analysis
- Lifetime determination
- Comparison with models

Identification of the mono-energetic FRS beam

11/11/2016

D. Ralet - SSNET 2016

Gate on ¹⁰⁸Mo beam

11/11/2016

D. Ralet - SSNET 2016

¹⁰⁸Mo from FRS:

D. Ralet - SSNET 2016

¹⁰⁸Mo from FRS: Mo isotopes identified in LYCCA

11/11/2016

D. Ralet - SSNET 2016

Mass determination of molybdenum isotopes

D. Ralet - SSNET 2016

Mass selection

11/11/2016

D. Ralet - SSNET 2016

D. Ralet - SSNET 2016

D. Ralet - SSNET 2016

11/11/2016

D. Ralet - SSNET 2016

11/11/2016

D. Ralet - SSNET 2016

Mass determination with the observed $\gamma\text{-ray}$ transitions

11/11/2016

D. Ralet - SSNET 2016

Mass determination with the observed $\gamma\text{-ray}$ transitions

11/11/2016

D. Ralet - SSNET 2016

Mass determination with the observed $\gamma\text{-ray}$ transitions

11/11/2016

D. Ralet - SSNET 2016

Mass determination with the observed γ -ray transitions

11/11/2016

D. Ralet - SSNET 2016

Optimized γ -ray spectrum

Optimized γ -ray spectrum

- Introduction: the mass region $A{\approx}100$
- Experimental setup
- Data Analysis
- Lifetime determination
- Comparison with models

D. Ralet - SSNET 2016

æ

Lifetime measurement

Lifetime measurement

Simulated centroid shift as a function of the half-life $_{0.08_{r}}$

Lifetime of the 4^+ state of ^{108}Mo

D. Ralet, Phys. Rev. C, submitted

Lifetime of the 4⁺ state of 108 Mo

D. Ralet, Phys. Rev. C, submitted

- Introduction: the mass region $A{\approx}100$
- Experimental setup
- Data Analysis
- Lifetime determination
- Comparison with models

D. Ralet - SSNET 2016

Comparison with models

D. Ralet, Phys. Rev. C, submitted

Inverse of the first 2⁺ energy: idea of deformation according Grodzins relation

11/11/2016

D. Ralet - SSNET 2016

11/11/2016

D. Ralet - SSNET 2016

T. R. Rodríguez et al. PRC 81, 064323 (2010)

Performed by T.R. Rodríguez

Using the Gogny D1S interactions

within the Symmetry Conserving Mixing Method (SCCM)

particle number and angular momentum projection

Coulomb-excitation of ¹⁰⁰Mo

K. Wrzosek-Lipska et al. PRC 86, 064305 (2012)

D. Ralet - SSNET 2016

28 / 31

臣

Systematics $B(E2; 2^+ \rightarrow 0^+)$

Systematics $B(E2; 2^+ \rightarrow 0^+)$

Systematics $B(E2; 2^+ \rightarrow 0^+)$

Systematics $B(E2; 4^+ \rightarrow 2^+)$

Maximum of deformation reach for N = 64

11/11/2016

D. Ralet - SSNET 2016

30 / 31

Maximum of deformation reach for N = 64

Ground state band of molybdenum are triaxial according to calculations

11/11/2016

D. Ralet - SSNET 2016

Maximum of deformation reach for N = 64

Ground state band of molybdenum are triaxial according to calculations

⇒ Proof-of-principle for HiSPEC experiment at the Super-FRS

D. Ralet,^{1,2,3} S. Pietri,² T. Rodríguez,⁴ M. Alaqeel,⁵ T. Alexander,⁶ N. Alkhomashi,⁷ F. Ameil,² T. Arici,^{8,2} A. Ataç,^{9,10} R. Avigo,¹¹ T. Bäck,⁹ D. Bazzacco,¹² B. Birkenbach,¹³ P. Boutachkov,² B. Bruyneel,¹⁴ A.M. Bruce,¹⁵ F. Camera,¹¹ B. Cederwall,⁹ S. Ceruti,¹¹ E. Clément,¹⁶ M.L. Cortés,^{1,2} D. Curien,¹⁷ G. De Angelis,¹² P. Désesquelles,³ M. Dewald,¹³ F. Didierjean,¹⁷ C. Domingo Pardo,¹⁸ M. Doncel,⁹ G. Duchène,¹⁷ J. Eberth,¹³ A. Gadea,¹⁸ J. Gerl,² F. Ghazi Moradi,⁹ H. Geissel,² T. Goigoux,² N. Goel,² P. Golubev,¹⁹ V. González,²⁰ M. Górska,² A. Gottardo,¹² E. Gregor,^{1,2} G. Guastalla,^{1, 2} A. Givechev,^{1, 2} T. Habermann,^{1,2} M. Hackstein,¹³ L. Harkness-Brennan,²¹ G. Henning,² H. Hess,¹³ T. Hüyük,¹⁸ J. Jolie,¹³ D.S. Judson,²¹ A. Jungclaus,²² R. Knoebel,² I. Kojouharov,² A. Korichi,³ W. Korten,²³ N. Kurz,² M. Labiche,²⁴ N. Lalović,^{19,9} C. Louchart-Henning,^{1,2} D. Mengoni,^{12,25} E. Merchán,^{1,1} E. Million,¹¹ A. Prochazka,² B. Quintana,²⁹ G. Rainovski,³⁰ M. Reese,^{1,2} F. Recchia,^{12,25} P. Reiter,¹³ D. Rudolph,¹⁹ M.D. Salsac,¹⁴ E. Sanchis,²⁰ L.G. Sarmiento,¹⁹ H. Schaffner,² C. Scheidenberger,² L. Sengele,¹⁷ B.S. Nara Singh,³¹ P.P. Singh,^{1,2} C. Stahl,¹ O. Stezowski,³² P. Thoele,¹³ J. Valiente Dobon,¹² H. Weick,² A Wendt,¹³

D. Ralet - SSNET 2016